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Chapter 1  

Introduction 

1.1 Background and motivation 

Network consists of elements, which are called nodes or vertices, with links (or edges) 

connecting them (Figure 1.1). The network is suitable to model systems where there 

are interactions among system elements. Examples include the Internet [1], World 

Wide Web [2], transportation systems [3, 4], electric power grid [5, 6], diffusion of 

innovation [7-13], citation network [14, 15], ecosystems [16, 17], and food webs [18, 

19]. There are optional parameters that introduce more realistic features of the systems 

into networks. For example, multi-types of nodes, different weights or capacity of each 

link, directed link, delay time of processing. However, this dissertation is primarily 

concerned with how network topology (structure) affects three typical dynamical 

processes on networks: i) probabilistic diffusion such as virus spreading [20], ii) 

cascade dynamics such as cascade failure [21], and iii) consensus dynamics such as 

synchronization [22]. This dissertation also aims to design the optimal networks to 

control those dynamics. 

The study of networks began from the problem of Königsberg Bridge by Euler in 

1735. There were seven bridges that spanned various sections of the river. The 

challenge was, could a person walk across each of the seven bridges only once, and

 
Figure 1.1 A small network with 4 nodes and 4 links. 
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return home? Euler presented the first mathematical demonstrations of this in 1735 

[23], and published his work in 1741 [24]. After that, the understanding of network 

topology was developed in mathematics as graph theory. For example Kirchhoff 

developed the theory of trees in 1847 as a tool in the study of electrical networks [25], 

and Arthur Cayley used tree formed graph to enumerate structural isomers of 

hydrocarbons in 1875 [26]. Networks are also studied in social science. The form of 

interaction between people is recognized as a key role to understanding the function of 

human society. These studies try to find out for example, the most important people for 

epidemic spreading (super spreader) and the individual who mostly contributes to the 

connectivity of the social network. 

However, in the last ten years the study of networks has been changing 

significantly from focusing on local functions, which are the centrality of individual 

nodes and links and the contribution of them to network connectivity, to the more 

macroscopic and statistical properties of networks. This shift has been driven mainly 

by the emergence of large-scale networks, which come from big data thanks to the 

advancement of information communication technology. In large-scale networks it is 

basically impossible to understand and deal with the exact properties of each node and 

link, even if there are sufficient data about them. Therefore, statistical data has more 

meaningful information to understand network properties. For example, Figure 1.2 

shows the network of the Top-500 US airports. Counting up the hop distance between 

all pairs of nodes (airports) has less meaning than the statistical information including 

the average hop-distance (= 2.99) or the diameter (= 7) to explain the properties of the 

network. There is growing emphasis on the statistical data when dealing with 

large-scale networks, which are called “complex network”. 

 

Figure 1.2 Top-500 US Airports (500 nodes, 2980 links): the network consists of the 

500 busiest commercial airports, which are represented by nodes, in the United States. 

A link exists between two airports if a flight was scheduled between them in 2002 [27]. 
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The main scopes of recent studies about complex network are roughly classified 

into three regions: i) Discovering statistical properties of networks shared commonly in 

many kinds of systems, which include for example, average hop-distance, clustering 

coefficients, maximum degree, degree correlation, and degree distribution [28, 29]. ii) 

Creation of network models (sets of procedures for creation of networks) that is useful 

for understanding the mechanisms and studying them mathematically [30-32]. iii) 

Studies on how network topologies affect dynamical processes taking place on 

networks for controlling or predicting the behavior of them [33-38].  

From the beginning of the studies of complex networks, many research focused on 

the first two regions: i) characterizing networks in the real world and ii) modeling the 

networks. This led to the groundbreaking discovery of fundamental principles of real 

networks; the power law and small-world effects (6 degrees of separation). Many 

models to replicate those networks have been created.  

Recently, the studies on the third region have attracted great interests. Physicists 

and biologists study efficient methods of vaccine supplies to prevent disease outbreaks 

[39-41]. Economists try to understand the mechanism of financial crisis [42, 43]. Social 

scientists study when opinion formation or diffusion of innovation can be achieved in 

society [13, 21]. The development of the studies on them is based on the statistical 

point of view and the mathematical tools, which are developed by the study on the first 

and second region (characterizing and modeling complex networks). 

One common question about any dynamical processes taking place on network is, 

“What kind of network is optimal to promote or prevent such dynamics?” and “How do 

we design optimal networks?”  

In this dissertation, I show optimal network topologies on probabilistic diffusion, 

cascade dynamics and consensus dynamics. Although these dynamics have been 

studied intensively and have a wide range of applications, little is known about optimal 

networks.  

Probabilistic diffusion is usually used to consider spreading of viruses in 

networked systems. The infected nodes spread with infection rate 𝛽 and curing rate 𝛿. 

However, the applications are not limited into only virus spreading. The diffusion of 

rumors in social networks or word of mouth effects in viral marketing is another 

example of applications. 

Cascade dynamics is a coordination process where each agent (node) decides to 

adopt innovation based on the numbers or the fraction of neighboring agents who 

already have adopted it. The process is also called opinion formation. In addition, 

cascade failure is another example of cascade dynamics. The failure of one of the 

nodes can lead to global failure due to cascade dynamics such as chain bankruptcy.  

Consensus dynamics is a process to attain coordinated states or synchronized 

states among agents. Each agent initially has different states (ex. velocity, frequency, 

geographical position), which represent observed data in sensor networks, internal 

phase of equipment in phase synchronization, and positions of mobile agents in 

flocking behavior. In consensus dynamics, all agents need to be in an agreement. 
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Especially, when the final state is the average of the initial state of agents, it is called an 

average consensus. Note that there are, of course, other important dynamical processes, 

which should be studied. Examples include the congestion problem (ex. a traffic jam 

on a highway and cyber-attack by mass packets on the Internet (distributed denial of 

service attack) [44-49]), the network tolerance against attacks or failures by removing 

nodes or links [50-57], and systemic risks [58, 59], however, they will not be discussed 

in this dissertation. 

1.2 Research objectives 

Understanding the relationship of network topology and dynamical processes is one of 

the ultimate goals of the study on complex networks [29]. The objective of this 

dissertation is to show what kind of networks is optimal to promote or prevent 

dynamical processes. Another objective is to propose efficient methods which can 

design very large-scale optimal networks. 

The dynamics considered in this dissertation are i) probabilistic diffusion, ii) 

cascade dynamics, and iii) consensus dynamics. These dynamical processes are studied 

intensively in many papers and they have wide applications. 

Scientists, sometimes mimic mechanisms of nature to find solutions to improve 

our lives: the wings of birds to fly, the lung in the human to remove carbon dioxide 

efficiently, the infrared sensor of melanophila acuminata to detect wild fire. Nature is a 

survival-of-the-fittest world, which means current morphology is formed through 

continual processes of trial and error, and this seems to be an optimal or better solution. 

For example, networks in our lives including human blood vessels, neural network, and 

metabolic network are acquired from the accumulation of small improvements over a 

long time. People study the essence of how these networks function very well. Lately, 

scientists need to shift from copying existing networks to the creation of entirely new 

networks to address various problems.  

In this dissertation, several kinds of optimal networks are designed using genetic 

algorithm (GA). The main benefit of GA is that it can work without the knowledge for 

how to design optimal networks. The GA requires only a proper objective function. 

The statistical indexes of networks, which are average-hop distance, clustering 

coefficient, degree correlation and others, are used to explain properties of networks. 

However, in this dissertation, the eigenvalue of the adjacency matrix and the Laplacian 

matrix is used as an index of a network. For example, the maximum eigenvalue of the 

adjacency matrix is used as an objective function of the evolutionary optimization for 

probabilistic diffusion, which corresponds to the existence of hub nodes having many 

links and the interconnectivity between those hub nodes [60]. In other words, the 

maximum eigenvalue shows whether there are “rich-club phenomena” in the network, 

which is usually observed in the Internet [61]. Hub nodes have dominant influence in 

probabilistic diffusion and cascade dynamics on networks, because they represent, for 

example, super spreader in pandemic and opinion leader in information cascades. The 
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index can represent the size of hub nodes and the clustering of them simultaneously 

that will be useful for catching the dominant properties of network topology. 

Furthermore, the eigenvalue ratio of the second minimum eigenvalue to the largest 

eigenvalue of the Laplacian matrix defines the time to attain a convergent state 

mathematically under consensus dynamics among networked agents [22, 62, 63].  

The large time complexity of the evolutionary optimization by GA is the side 

effect of it, which means computation time is large to propose a solution. It is not small 

problem when we create large-scale networks by the method. Then a two-step approach 

is used to create an optimal network: First, an optimized network with the suitable size 

of nodes is designed by the evolutionary optimization. Second, the heuristic network 

designing model is proposed to scale up them to large-scale networks. The model is not 

only useful for making large-scale networks but also understanding the topology 

mathematically. The success of the network models to replicate the properties of 

optimal networks shows what kind of topology in evolutionary optimized networks is 

essential to make them optimal. 

Complex networks were mainly modeled and analyzed on single networks in 

previous studies. However, the global optimization of network topology becomes 

unrealistic or impossible as the number of nodes increase in the network. Furthermore, 

in general, if a networked system has a very large number of nodes, the system consists 

of many networks which are interconnected. Therefore, I also propose a network 

design method that forms a very large-scale network by connecting modular networks 

recursively. The proposed method can reconstruct the same structure of modular 

network as the inter-module structure.  

1.3 Outlines 

This dissertation is organized into 8 chapters, including this one, and additionally the 

bibliography, and the list of the author’s publications at the end. 

Throughout this dissertation, three types of optimization methods are proposed for 

designing optimal networks of dynamical processes (Figure 1.3). Each proposed 

optimization method has suitable application range defined by the number of nodes in 

the network. If the network size is small, the evolutionary optimization of network 

topology by genetic algorithm can be applied, but if the network is large, it is better to 

use heuristic optimization where network models form networks efficiently. However, 

if the network becomes very large, the global optimization is not realistic. It is very 

natural the optimization is done locally. Therefore, a very large-scale networked system 

is assumed to consist of multiple optimal-networks. Each network is optimized by 

evolutionary optimization or heuristic optimization. A sophisticated method is also 

proposed to interconnect those networks as modular networks. The details of each 

chapter are given below. 

Chapter 2 presents a brief review of fundamental concepts and results of the study 

about the dynamical processes considered in this dissertation. 
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Chapter 3 proposes a new framework for network design consisting of three types 

of network design methods. It begins with an introduction to the concept of 

optimization of networks. I propose evolutionary network optimization and explain its 

properties. I also introduce the concept of the heuristic network model. The model can 

form required networks efficiently in terms of time and space complexity. Finally, the 

method using modular networks is proposed to design a very large-scale network. 

Chapter 4 deals with probabilistic diffusion processes on networks and show 

optimal network topologies to maximize (enhance) or minimize (prevent) the diffusion 

processes. These networks are created by the evolutionary network optimization. I also 

propose the network model for the maximization of probabilistic diffusion. This 

network model can produce the same topological properties of evolutionary optimized 

networks efficiently. Furthermore, numerical simulations validate the performance of 

optimal networks. Finally, i) the time evolution of the diffusion processes and ii) the 

relationship between maximum eigenvalue of the adjacency matrix and the properties 

of networks on diffusion processes are discussed. 

Chapter 5 deals with cascade dynamics and show optimal network topologies to 

maximize the dynamics by evolutionary network optimization. I propose a network 

model that replicates it. It is shown how the global cascade is driven easily on the 

optimal network. It is also shown the optimal network minimizing global cascade is the 

optimal network maximizing probabilistic diffusion. Furthermore, I explore the 

average cascade size and the frequency of global cascade. It is shown that the 

probability of a global cascade will be underestimated due to the very small average 

cascade size. 

Chapter 6 deals with consensus dynamics among networked agents and shows 

evolutionary optimized networks to minimize or maximize the convergence time of 

consensus dynamics. The network models replicating them with specified average 

degree are also proposed.  

Chapter 7 proposes the method to form very large-scale network efficiently by 

modular networks with recursive structure of optimal networks. Numerical simulations 

and spectrum analysis, which is a set of eigenvalues, are done on the modular networks 

to demonstrate the performance.  

Chapter 8 summarizes the results of our work, and provides ideas for future 

research. 

There is a list of the author’s publications at the end. 
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Figure 1.3 Proposed network design methods depending on the network size. Each 

method has feasible network size to create it. The chapter number after the name of 

each optimization method represents where the method is proposed and discussed. 
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1.4 A short glossary of terms 

For the convenience of understanding, the definitions of some technical terms used in 

this dissertation are given as follows. 

 Node or Vertex: The fundamental unit of a network, which represents, for 

example, router (in computer network), individual (in social network), and agent 

(in multi-agent systems). 

 Link or Edge: The line connecting two nodes, which represents, for example, 

logical connection (in computer network), some kind of relationship (in social 

network), interaction (in multi-agent systems). 

 Network or Graph: A set of nodes (vertex) and links (edges).  

 Undirected link: A link that has no direction of flow or interaction between two 

nodes. 

 Degree: The number of links connected to a node.  

 Average degree: The average degree 〈𝑘〉 is an average number of degrees over 

all nodes, which is defined by 〈𝑘〉 = 2𝐿/𝑁 where 𝐿 is the number of links and 

𝑁 is the number of nodes. It is also denoted by 𝑧 in this dissertation. 

 Cluster: It is a set of vertices, which usually share common attributes. Nodes in a 

same cluster can be reached from each other by paths running along the links of a 

network. 

 Hop-distance: The minimum number of links on the path, which goes from a 

starting node to a destination node. 

 Adjacency matrix: The adjacency matrix is defined by the network topology. The 

element of the matrix 𝐀 in the 𝑖 th row and 𝑗 th column is expressed as 𝑎𝑖,𝑗. 

The elements 𝑎𝑖,𝑗 = 𝑎𝑗,𝑖 = 1 when node 𝑖  and node 𝑗  are connected by an 

undirected link, and the elements 𝑎𝑖,𝑗 = 𝑎𝑗,𝑖 = 0 when node 𝑖 and node 𝑗 are 

not connected.  
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Chapter 2  

Dynamical processes on networks 

Dynamical processes on networks (ex. virus spreading, diffusion of innovation, opinion 

formation, collective behavior, cascade failure and synchronization), where the 

concerned state or quantity of node changes over time, attract the most attention of 

scientists. They are critical issues in our society. They are also complex; it is difficult to 

control and complicated to predict their behavior. There are several approaches to study 

dynamical processes taking place in the system, which are for example, simple 

differential equation-based-model and complex agent-based-model. In many cases, 

however, the network-based approach is used, which considers pathways of dynamical 

processes. This chapter aims to briefly summarize the key points of dynamical 

processes studied in this dissertation (probabilistic diffusion dynamics, cascade 

dynamics, and consensus dynamics) and to introduce frameworks for the study on 

dynamical processes. 

2.1 Dynamical processes on networks 

Dynamical processes on networks are classified into roughly three types of dynamics: 

i) probabilistic diffusion such as epidemical diffusion, ii) cascade dynamics on 

threshold model, and iii) consensus dynamics (or synchronization). They have been 

well studied because of the importance of the problems. This dissertation aims to 

design optimal networks focusing on these three types of dynamics.  

Probabilistic diffusion is a prototype example of dynamical processes on networks 

[64, 65]. Epidemiologists, computer scientists and social scientists share a common 

interest in studying the diffusion phenomena. Of course, they are actually interested in 

different phenomena in each discipline, but the phenomena can be modeled by a 

similar model. A classic version of the model is the susceptible infected susceptible 

(SIS) model. In this model, an infected individual can infect a susceptible individual 

with probability 𝛽, and an infected individual can be in the susceptible state again with 

probability 𝛿 (Figure 2.1). The infection ratio 𝛽/𝛿 decides whether a computer virus 
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Figure 2.1 SIS model: (𝛽: infection rate, 𝛿: curing rate). 

or a rumor survives or not. These epidemiological contact processes are analogical 

processes in other fields including spread of computer virus on the Internet and 

diffusion of a rumor or information by the word of mouth in a social network.  

The main concern of probabilistic diffusion (SIS model) is the tipping point for 

the diffusion to take off. For example, the tipping point means the minimum infection 

ratio where a virus can survive at a steady state. The pioneering work by 

Pastor-Satorras and Vespignani found that there is no intrinsic epidemic threshold on 

scale-free networks [66]. Many numerical simulations and mathematical analysis 

succeeded to show the tipping points of other networks, but the optimal network to 

promote or prevent the diffusion dynamics is not clear yet.  

Our focus here is to find the kind of network topology that is optimal under fixed 

network resources. A key node characterizing a network for diffusion dynamics is a 

hub node. Intuitively, one would expect the diffusion dynamics to occur and survive 

more easily with the increase in the size of the hub node. However, this dissertation 

will show that the tipping point will be minimized when a network has a cluster of hub 

nodes of medium size. The cluster structure of hub nodes of medium size maximizes 

efficiently the number of contact processes between nodes under fixed network 

resources than few hub nodes of a larger size.  

Cascade dynamics on networks can be classified into two types of models: 

overload model and locally dependent model (threshold model) [42, 56, 67]. The first 

overload model is used to study failures due to an overload when there is network flow 

of physical quantity, for example, in power transmission systems, transportation 

networks or Internet traffic [35, 56, 68, 69]. In this model, the failure of nodes or links 

will change the direction and the amount of flows and it makes new congestion or 

overload causing another failure of nodes or links. Due to the iteration of this process, 

the failure of even one node could sweep out all nodes in the entire network.  

The second threshold model is used to study the decision making of interacting 

agents, diffusion of innovation, and cascade failures due to risk diffusion [21, 58, 70]. 

In this model, a node has a binary state, for example, 0 or 1, good or bad, or normal or 

failure. The state of each node depends on the state of its neighboring nodes, and this 

model has locality with positive externality, that means they try to do the same action 

with their neighbors. The conditional region in which the states of all nodes are attuned 
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to the change is defined by the average degree of networks and the resistance 

(threshold) of nodes, which is called the “cascade window”.  

The networks that maximize or minimize the size of a cascade window are not 

well known in previous studies. Previous studies show a network with a degree 

distribution that obeys exponential distribution maximizes cascade window, because it 

has a relatively large number of nodes, called the vulnerable nodes that conforms easily 

with neighboring nodes. However, this dissertation shows the coexistence of a cluster 

of vulnerable nodes and a cluster of hub nodes that makes those vulnerable nodes more 

sensitive to neighboring nodes plays a crucial role in maximizing a cascade. The 

accumulation of change in a cluster of vulnerable nodes changes the state of hub nodes 

when the amount of accumulation exceeds a critical mass. In addition, this dissertation 

shows that a cluster of hub nodes works to minimize a cascade when a network does 

not have a cluster of vulnerable nodes. The cluster of hub nodes is very stable even if 

the state of a few hub nodes in the cluster is changed, because their neighboring hub 

nodes are not affected by the changed nodes. 

Consensus dynamics has a long history in computer science and form the 

foundation of the field of distributed computing [62, 71]. Formal study of consensus 

dynamics conducted by groups of experts originated in statistics [72]. The original idea 

was in aggregation of information with uncertainty obtained from multiple sensors or 

experts. Distributed computation over networks has a tradition in systems and control 

theory on agreement problem for distributed decision-making systems [73]. 

In networked agents, consensus means to reach an agreement regarding a certain 

quantity of interest that depends on the internal state of all agents. A consensus 

algorithm is an interaction rule that specifies the information exchanged between an 

agent and all of its neighbors on the network [74]. The theoretical framework for 

posing and solving consensus problems for networked systems is well surveyed by 

Olfati-Saber and Murray in [22]. 

The consensus problem is also related to the problem of synchronization [74]. In 

recent studies, the reason for the occurrence of synchronized networks becomes clear 

and the underlying network topology is important [75]. However, synchronization 

often occurs unexpectedly and little is known what the best network topology for 

synchronization is. The small network distance does not mean a network is suitable for 

fast consensus.  

It is confirmed in this dissertation that heterogeneous degree distributions 

typically seen in scale-free networks inhibit the synchronizability [76]. Earlier works 

suggest the specific regular network called “Ramanujan network” is optimal for fast 

consensus [75]. However, this dissertation shows the regular network is not always 

optimal for fast consensus especially for sparse networks.  
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2.2 Frameworks for the study on dynamical processes 

Dynamical processes had been studied at first under homogeneous mixing of 

population where all agents interact directly (Figure 2.2 (a)) and a short time later the 

new concept of network-based approach is introduced, which studied the dynamical 

processes on a random graph.  

A groundbreaking 1998 paper by Watts and Strgatz [5] showed that the topologies 

in the real world, including biological, technological, and social networks, lie between 

completely regular and completely random networks. They showed the importance of 

considering more complex network topology, which are strongly related to the function 

of networks. Furthermore, the networks including Internet [77], airline [3], sexual 

contact [78] and others are found to have common degree distribution, which obey the 

power law 𝑝(𝑘) = 𝑘−𝛼. The distribution indicates the existence of many tail nodes 

with a few connections and non-zero hub nodes with many connections to others in a 

network. Those hub nodes represent super-spreaders in probabilistic diffusion, which is 

not considered under the homogeneous mixing assumption. [62]. Therefore, the 

dynamical processes began to be studied in terms of complex network that defines 

pathway or contact process of interaction (Figure 2.2 (b)).  

The underlying hypothesis of the approach to understand dynamical processes is 

that the different pathway or sequence of interactions brings different results. In 

addition more complex environment or more realistic situation can be introduced to the 

network-based approach, where the topology will be changed over the time or many 

kinds of attributes are set on nodes and links. However, introducing complex situation 

makes results obscure and also makes it difficult to induct the relationship between 

dynamical processes and network topology. Then, networks with static attributes are 

usually used in the study of dynamical processes on complex network. 

The multi-agent system is another approach to study complex dynamical 

processes sophisticatedly. For example, in order to study a flu epidemic in a town or 

flocking behavior of moving agents, the multi-agent system can introduce multi-types 

of characters or action-rules on each agent and also make an artificial society with a 

number of agents (Figure 2.2 (c)). In agent based system, network topology usually 

emerged as a result of interactions between agents. This approach is useful to answer 

the question “Does the observable phenomena come from the difference in the network 

topologies or the difference of the dynamics of elements?” Furthermore, the agent 

based model is used to explore the evolution of networks [79, 80]. The hypothesis used 

here is that networked systems have topology (ex. hierarchy, rule, and norm in society) 

generated by the interaction of elements and the topology also imposes some sort of 

influence on them. The fluctuations of the behavior of elements invoked by the 

topology will make another topology. This relationship of different level interaction 

between a global topology and local elements is called micro-macro loop [81] (Figure 

2.2 (d)). The agent based model intrinsically can draw the multi-scale interaction with 

network topology.  
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In this dissertation, it is assumed that there is a static rule defining the topology of 

a networked system. This means the network topology itself is not changed by 

dynamical processes and it has been static during dynamical processes. This 

assumption is not a trivial one, but it is applicable in the situations where the dynamical 

processes and network dynamics are mapped on different time scale. For example, 

computer virus usually spread silently at first via network without crashing any 

computers and connections to avoid countermeasures from users. Then, network-based 

approach is taken to study the dynamical processes and it is aimed to design optimal 

networks that promote or prevent the above mentioned dynamical processes by using 

new framework of network design proposed in the next chapter. After that, the network 

design problem on each dynamics is discussed in the following chapters. The analysis 

of the behavior of dynamical processes on dynamical networks is left as the next 

challenge of study.  

Networks with modular structure or community structure are relevant to many 

social, biological, and industrial networks [82-84]. Modular networks consist of a 

number of modularized networks, where nodes within each module are densely 

connected but the connectivity of inter-modules is sparse. Typical examples of modular 

networks are metabolic networks or the Internet. Each modular network is defined in 

terms of its function or location and modular networks are combined in a hierarchical 

manner into a larger unit. Modular structure is a common strategy to form very 

large-scale networks in real world. Therefore, dynamical processes on modular 

networks are also studied in this dissertation after the study of each dynamical process 

on single network. This dissertation focuses on the kinds of topology of inter-modules 

which are optimal for dynamical processes. Two intuitive methods to interconnect 

modular networks are considered: i) random connection and ii) recursive connection. It 

is shown that the recursive connection is effective to coordinate the interaction patterns 

of inter-modules, where the structure of inter-modules becomes the same with optimal 

structure of the modular network. 

 

 

 

 

 

Figure 2.2 Several approaches to study dynamical processes. 
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Chapter 3  

Network Optimization 

3.1 Introduction to network optimization 

Optimization is the standard policy of network design. The points to be optimized and 

the method to realize optimization may vary with the conditions that must be satisfied. 

If we focus on the problem of traffic jam on a highway network, there are many 

different approaches to prevent it. Examples are introducing a new fare structure, 

adjusting the maximum speed, making a new bypass for congestion area, encouraging 

people to use public transportation system. There are fundamentally four major types 

of optimization problems related to networked systems [85].  

Type I: Optimization of topology [5, 86, 87]. Under fixed number of nodes and 

links a network is designed so that topological properties are optimized or adjusted as 

required. The optimization problem belongs to the category of graph theory (ex. 

minimization of average hop distance, maximization of clustering coefficient). This 

type of network design problem is studied as a method to model networks in the field 

of complex networks. For instance, the small-world network model by Watts-Strogatz 

have small average hop-distance and large clustering coefficients by the coexistence of 

the regularity and small randomness. The simple rule of degree-based preferential 

attachment of nodes can evolve scale free networks with small average hop-distance 

and power law in the degree distribution.  

Type II: Optimization of parameters of dynamics. Under a static network topology, 

the parameters of nodes and links are optimized (ex. in a road network, finding the best 

setting of speed limit to reduce traffic jam).  

Type III: Optimization of topology for given dynamics [88, 89]. Under given 

dynamics with fixed parameters, a network that maximizes the fitness value is designed.  

For example, scale free networks have good robustness against random failures of 

nodes, and random networks have good robustness against intentional attacks on nodes. 

Furthermore, the technical limitation of routers used on the internet makes hierarchical 

structure to maximize the data flow, which is called the Heuristically Optimized 
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Topology (HOT) [90]. The HOT is another mechanism of the emergence of the power 

law in degree distribution instead of the well-known mechanism of preferential 

attachment.  

Type IV: Dynamics-driven network optimization [56, 80, 91]. Find the best 

network under dynamics affected by dynamical topology. In this case, the network 

topology affects the behavior of the dynamics and the change of the dynamics will 

affect the network topology again. A typical example of this case is a cascade failure 

such as a blackout. The surge of electrical current flow due to an accident or failure of 

an equipment will damage a power plant (node) or a transmission line (link) in power 

grid and the changes of the electric current flow cause further failure.  

This dissertation focuses on a type III network optimization to find a network 

topology maximizing the performance under given dynamical processes. In this case 

the topology is unchanged, which means there is no birth-death process of nodes and 

links during the dynamics. 

The optimization problem can be formulated as,  

 max(𝐹(𝝓))  𝑠. 𝑡. 𝐺(𝑉, 𝐸) = 𝑚, (3.1) 

where 𝐹(𝝓) is the objective function also called fitness function on a network 

𝐺(𝑉, 𝐸), and 𝝓 = 𝜙(𝑥1, 𝑥2,⋯ 𝑥𝑁) is a dynamical process with parameters 𝑥𝑖, where 

the number of parameters 𝑁 depends on the dynamics. 𝑉 is the set of nodes and 𝐸 

is the set of links. The network resource on 𝑉 and 𝐸 is constant m. From the form of 

equation (3.1), the problem seems to belong to equality constrained optimization that is 

solved by Lagrange multiplier. Therefore, if the problem can be formulated, the best 

network will be obtained mathematically as a solution of the extreme value problem, 

which maximizes 𝐹(𝝓). However, it is difficult to give such a constraint equation 

because the constraint is not simple and cannot be solved analytically in general.  

Thus, it is necessary to adopt a looser definition of the word “optimization” by 

extending it to include a tendency of the network to improve its behavior. Under the 

definition, there are alternative methods: probabilistic meta-algorithm including the 

genetic algorithm and simulated annealing, which finds a better solution by the 

accumulation of the improvement. In essence, according to the no free lunch theorem, 

there is no difference between genetic algorithm and the simulated annealing to search 

for better solutions efficiently. However, the simulated annealing needs the gradient of 

the objective function and a proper schedule to control moving direction and moving 

distance for exploring an answer. Furthermore it can hold only single candidate answer. 

As a result, it will be complex and easy to be strapped to local optimal solutions. On 

the other hand, the genetic algorithm does not use the gradient of the objective function 

and does not need a scheduling management. Then, it is relatively simple and can 

explore the searching space globally using a set of many candidate answers 

simultaneously. Therefore, the genetic algorithm seems to be suitable for multimodal 

problems and a good enough solution that has been globally searched will be obtained. 

Accordingly the genetic algorithm (GA) is used here for network optimization. 
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3.2 Evolutionary optimization 

A critical limitation of the optimization of networks is the lack of theoretical 

knowledge about the relationship between the topological properties and the index of 

network dynamics theoretically. Therefore, probabilistic meta-algorithm becomes the 

only way for the optimization of networks as mentioned in the previous subsection. 

In this dissertation, evolutionary optimization by using GA is proposed to create 

optimal networks. In the optimization, the initial population of networks advances as 

results of accumulation of the improvement at each generation. In the algorithm, each 

node changes the linkage to others randomly to find a better network than the original 

one. The benefit of applying evolutionary optimization to network design is that the 

algorithm works without the knowledge of the optimal network topology. Setting the 

objective function, which implies how current network is near to an optimal one, is 

enough to run the algorithm.  

Although the evolutionary optimization does not guarantee that the output is the 

best solution, it usually provides better solutions. It also shows whether there is still 

space for improvements in the current networks. Another benefit of the network design 

by evolutionary optimization is the sufficient flexibility toward optimization problems. 

The method can be applied to different problems and purposes if a proper objective 

function can be set. 

 

 

 

 

Figure 3.1 The procedures of evolutionary network optimization.  
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The evolutionary optimization consists of the following 7 steps as shown in 

Figure 3.1. 

 

1. Create an initial population of networks. 

2. Pick up two individuals (networks) randomly from the population as parent 

networks. 

3. Create new networks from the parents by genetic operations, such as 

mutation and crossover. 

4. Calculate the fitness of newly created networks and the parents’ networks. 

5. Select two networks to be put back into the population. 

6. Calculate the fitness of the rest of the population 

7. If the stop criterion was not met, go back to step 2. If the stop criterion was 

met, stop the algorithm and return the result. 

The number of population and topology of each network is important to obtain a 

useful answer in a reasonable time. In this dissertation, 20 random networks are created 

as initial networks, because the best network, which has a similar topology to the 

optimal one, is unknown. In addition, only connected networks are considered to avoid 

meaningless results. Therefore, whether the network is disconnected is checked in all 

steps where it can happen.  

In order to be able to apply genetic operators (mutations and crossover), each 

network is represented by the chromosome (Figure 3.2). It is a sequence of binary 

numbers from the adjacency matrix of a network. The adjacency matrix of an 

undirected network is a symmetric matrix. Therefore, the information of upper triangle 

of the matrix is enough to draw the network topology. 

In the step of picking up parent networks to create children networks, the two 

networks are selected randomly as parents from the population. The random selection 

method works to minimize the gap of the fitness between two generations, and it is 

useful to maintain diversity in the population during the process of optimization. The 

parent networks are used to create several new networks with a genetic operation 

(uniform crossover). The number of new networks depends on the size of the search 

space. 

 

 

Figure 3.2 The chromosome of a network. 
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In step of evaluating newly created networks, two most suitable networks are 

selected from the created networks in the previous step and the parent networks. The 

selected two networks are inserted into the population again. Note that if the fitness of 

any child networks is worse than the parent networks, the parent networks are returned 

back into the population. 

In the step of calculating the fitness, the population is evaluated by an objective 

function to check the distribution of the quality of networks. The evaluation results are 

used later for the termination of the evolutionary optimization. 

In the step of stop criteria, it stops the whole genetic algorithm. As a stop criterion, 

the convergence of optimization is used. If all members have the same fitness and the 

value has not changed for more than ten iterations, the algorithm is stopped.  

A big time complexity characterizes the proposed evolutionary optimization. In 

order to estimate the time complexity, the searching space of genetic algorithm and the 

calculation time of the maximum eigenvalue of the adjacency matrix are discussed. 

Each node has a binary state (0,1). Then the total number of states of 𝑁 nodes is 

𝑂(2𝑁). On the other hand, the calculation cost for the maximum eigenvalue is between 

𝑂(𝑁2) and 𝑂(𝑁3), where the divide-and-conquer eigenvalue algorithm from the 

standard matrix computation library LAPACK [92] calculation is used. The simulated 

time complexity is defined as the average convergence time of evolutionary network 

optimization. From preliminary experiments shown as a function of the number of 

nodes in the Figure 3.3, it is about 𝑂(𝑁2.3), which is a result of over 10 simulations on 

the computer with Intel Core-i5 and 32 GB memory and there are 20 initial random 

networks having 500 nodes. The space complexity is 𝑂(𝑁2), because the product of 

matrices is essential for the calculation of the maximum eigenvalue. It seems to be 

unrealistic or difficult to create large-scale networks by the evolutionary optimization. 

Thus I consider heuristic methods to create large-scale optimal networks in next 

section. 

 
Figure 3.3 The convergence time of genetic algorithm as a function of the number of 

nodes in the network. 
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3.3 Heuristic methods for network optimization 

This dissertation aims to design optimal network topologies to promote or prevent 

dynamical processes mentioned in Chapter 2. Heuristic method such as the network 

model is useful to understand how evolutionary optimized networks are evolved and to 

do mathematical analysis on the obtained networks. The network model also has 

enough scalability for the creating of a large-scale network. However, the evolutionary 

optimization is limited to medium size of networks with several hundred nodes. 

The heuristic method (network model) is a set of procedures or rules to reproduce 

network topology that share the same properties and function with desired networks. 

As an example, the network model to make scale free network by Balabási Albert, of 

which degree distribution obeys the power law, is shown in the following 5 steps. In 

the model, the number of nodes and links grows over the time. 

 

1. Create a small connected network (ex. network with 5 nodes and 7 links). 

2. Calculate the fitness f(𝑑𝑖) of each node 𝑖, where f(𝑑𝑖) = 𝑑𝑖/∑𝑑𝑖 and 𝑑𝑖 

denotes the degree of node 𝑖. 

3. A new node is introduced to the network and linked to 𝑚 nodes in a current 

network, which are stochastically selected based on the fitness value 

calculated in the previous step.  

4. Iterate steps from step 2 to step 3 until the number of nodes meets the 

demand. 

 

The random graph is another typical example of a network model in which nodes 

are connected randomly. In the random graph model, the required number of nodes 

without links are placed initially and whether a pair of nodes is linked or not depends 

on the probability 𝑝. The output of the model with 𝑝 = 1 is a complete graph where 

each node is connected to all of the others and the output of the model with 𝑝 = 0 is 

the set of isolated nodes.  

The Watts-Strogatz model for a small world network is another type of network 

model, which has a link rewiring procedure. The ring-lattice network is prepared as an 

initial network and a few links are rewired randomly. By the controlling the number of 

rewired links, the network with small average hop-distance and large clustering 

coefficients is formed. The other sophisticated network models can be found in related 

studies [30, 93]. They can make network have arbitrary degree distribution or replicate 

topological properties in the real world. Furthermore some studies have developed 

dynamical network model, in which the networks are formed as a result of multi-agent 

interactions [79, 80].  

As one of the side benefits of network models, the variety of optimized networks 

can be obtained by controlling the parameters in the network models. These trial 

experiments help us to understand the properties of optimized networks and may lead 

to find new properties that have not been realized yet.  



20 

 

3.4 The recursive network design with modular networks 

The main advantage of recursive network design is that it is suited for creating a very 

large-scale network and it is easy to evaluate mathematical properties, such as degree 

distribution.  

In the previous section, heuristic method (network model) is introduced to design 

a large-scale network. Although the heuristic methods which are obtained from the 

results of evolutionary optimization, can create large-scale optimal networks, it is still 

difficult to scale up to very large-scale networks due to computational time. 

Furthermore the optimization of a very large-scale network itself is sometimes 

unrealistic, for example it is restricted by geographical restrictions or organizational 

constraint. 

Therefore, this dissertation proposes a new approach to design a very large-scale 

network (Figure 3.4) with four-steps. Firstly, the proposed evolutionary optimization is 

used to form optimal network on a given dynamical process, which has suitable size of 

nodes depending on the convergence time. Secondly, the essential properties of the 

obtained network are clarified. Thirdly, heuristic network model (a set of procedures), 

which can replicate the essential properties, is developed by using several techniques 

obtained in previous studies of network modeling. Finally, recursive network design is 

applied. Each modular network is optimized by using evolutionary optimization or 

heuristic network model. In order to interconnect those modular networks, the method 

of recursive connection is proposed, where the topology between modular networks is 

the same as the topology of modular network itself. By replicating the local topology of 

modular network globally, the optimal very large-scale networks can be designed.  

The “Modular networks” is a realistic and efficient concept for network design 

along with the increase of the network size. Examples include biological systems [94, 

95], WWW [94, 96], and social networks [97, 98]. The detail of recursive network 

design with modular structure is presented in Chapter 7. 
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Figure 3.4 The comparison of the proposed approach with the conventional approaches 

for designing networks. 
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Chapter 4  

Probabilistic Diffusion Dynamics 

In this chapter, optimal networks are designed to promote or prevent probabilistic 

diffusion dynamics. The diffusion scenario defines whether the promotion or the 

prevention is suitable. Probabilistic diffusion largely corresponds to the size of the 

maximum eigenvalue of the adjacency matrix. The optimal network is designed, which 

has the largest or smallest maximum eigenvalue of the adjacency matrix, by using the 

proposed evolutionary optimization. 

 

4.1 Diffusion models 

In this section, three types of models of probabilistic diffusion process are introduced. 

The model of probabilistic diffusion initially has no concept of network topology, but 

the concept had been introduced along the recognition of the potent influence of 

network topology to the diffusion. Recently the new eigenvalue-based framework for 

probabilistic diffusion is developed, which no longer needs mean field assumptions to 

deal with probabilistic diffusion mathematically. 

4.1.1 A homogeneous mixing model 

Among researches concerning various diffusion processes, the spreading of virus has 

received the most attention due to the impact of the problem [3]. The meaning of the 

spreading is not interpreted as only bad effects but also good effects. For example, the 

information diffusion process by word of mouth can be viewed as a viral propagation 

in which virus spreads by a contact process between individuals [99]. At the beginning 

of the study, it is assumed that each person can interact with others directly, which is 

called a homogeneous mixing. 

Two major diffusion models are well studied for the study of the contact processes. 

They are SIR model and SIS model. In SIR model, the population is classified into 



23 

 

three categories, susceptible (𝑆) , infected (𝐼)  and removed (𝑅) . The infected 

individual is removed from the population with the probability 𝛿, and the removed 

people do not communicate with other people after that. The number of population who 

will be infected decreases along with the time evolution and there are no infected 

people finally. The dynamics of the SIR model is formulated as, 

 
𝑑𝑆

𝑑𝑡
= −𝛽𝐼𝑆,  

 
𝑑𝐼

𝑑𝑡
= 𝛽𝐼𝑆 − 𝛿𝐼,                  (4.1) 

 
𝑑𝑅

𝑑𝑡
= 𝛿𝐼.  

On the other hand, in the SIS model, the population is classified into only two 

categories, susceptible (𝑆)  and infective (𝐼) . A susceptible individual becomes 

infected by other neighboring infected individuals with infection rate 𝛽. The infected 

individual becomes susceptible again with the curing rate 𝛿. The dynamics of the SIS 

model is formulated as, 

 
𝑑𝑆

𝑑𝑡
= −𝛽𝐼𝑆, 

                 (4.2) 

 
𝑑𝐼

𝑑𝑡
= 𝛽𝐼𝑆 − 𝛿𝐼. 

Even if probabilistic diffusion is observed from the network based viewpoint, the 

network with high link density and small variance between populations meets the 

homogeneous mixing. However, many real network does not meet the mixing 

assumption of the homogeneous model. In many networks, the number of contactable 

nodes of each node is restricted to some extent by the network regulation, and then the 

effect of the network topology on the diffusion process should be considered.  

In this dissertation, probabilistic diffusion is dealt with as a dynamical birth-death 

process with self-recovery using the SIS model, as shown in Figure 4.1. An infected 

agent diffuses its own state to its all adjacent agents in a single step with probability 𝛽, 

while at the same time an infected agent may recover or be initialized with probability 

𝛿. The ratio of the two factors 𝛽/𝛿 is defined as the relative diffusion rate 𝜏 of the 

contact process. 
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Figure 4.1 The diagram of the transition of the state of node: 𝛽 is the infection rate 

and 𝛿 is curing rate. 

4.1.2 A network based model 

Kephart and White [65] introduced the concept of network-based approach and 

consider SIS model on a homogeneous network, in which all nodes have 〈𝑘〉 links. 

Because the mean field approximation will fit very well in this case, the behavior of 

one node represents the whole network dynamics. The probability to become infected 

of a node corresponds to the fraction of infected nodes in a network. 

The fraction of infected nodes at time 𝑡 is denoted by 𝑝(𝑡). Then, (1 − 𝑝(𝑡)) 

denotes the probability that node 𝑖 is healthy and 𝑘𝑝(𝑡) denotes expected value of 

infected neighboring nodes when node 𝑖 has k neighboring nodes. The change of the 

fraction of infected nodes is occurred by two processes: 1) susceptible node becomes 

infected and 2) infected node becomes susceptible. Hence, the change of infected 

nodes can be formulated by using differential equation as, 

 
𝑑𝑝(𝑡)

𝑑𝑡
= −𝛿𝑝(𝑡) + 𝛽〈𝑘〉𝑝(𝑡)(1 − 𝑝(𝑡)).          (4.3) 

At a steady state 𝑑𝑝(𝑡 = ∞)/𝑑𝑡 = 0, the following relationship as shown in equation 

(4.4) is obtained from equation (4.3). 

 𝑝(∞)(〈𝑘〉𝜏 − 1 − 〈𝑘〉𝜏𝑝(∞)) = 0, (4.4) 

where 𝜏 = 𝛽/𝛿. The equation (4.4) has two solutions for 𝑝(∞). The trivial solution is 

𝑝(∞) = 0, where the infection rate 𝛽 that is sufficiently small, thus the computer 

virus or epidemic will disappear. The another solution, which shows how many nodes 

are infected at a steady state, is 

  𝑝(∞) =
〈𝑘〉𝜏 − 1

〈𝑘〉𝜏
. (4.5) 

The important index of epidemics, which decides whether epidemic will die out or 

survive, is the basic reproductive number 𝑅𝑜 [100, 101]. The index shows the number 

of secondary infected people generated by one primary infected individual, and it can 

be estimated as,  
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 𝑅𝑜 =
𝛽〈𝑘〉

𝛿
. (4.6) 

If 𝑅𝑜 > 1, which means the number of infected individuals is larger than those 

who are recovered, the virus will survive and spread to the society. Then, the critical 

infection rate (tipping point) of the pandemic 𝜏𝑐 = 𝛽/𝛿 is obtained as, 

 𝜏𝑐 =
1

〈𝑘〉
. (4.7) 

On the networks with power law, the average degree 〈𝑘〉  is no longer 

representative value for the tipping point due to the divergence of the fluctuation 〈𝑘2〉. 

When the size of network is infinitely or sufficiently large, the alternative tipping point 

𝜏𝑐 is obtained as, 

 𝜏𝑐 =
〈𝑘〉

〈𝑘2〉
. (4.8) 

This result may come as a surprise to many, because it implies the any epidemic, even 

if 𝛽 ≃ 0, can spread on those networks [66, 77]. This is one of evidences that the 

network topology affects dynamical process.  

The initial state of each node in the network is negligible at a steady state under 

this model, and it is clear that probabilistic diffusion easily occurs on networks with 

many links. Therefore, when the diffusion of bad things is considered, such as 

computer virus or flu, it is important to take a balance between the network 

performance, which is usually related to the number of links, and the robustness 

defined by equation (4.8) . 

4.1.3 A diffusion model from eigenvalue viewpoint 

Recently, a sophisticated mathematical framework is introduced, which can deal with 

probabilistic diffusion with no mean field approximation [20, 102]. Assuming the 

arrival of an infection along each link and the curing process of an infected node are 

independent Poisson processes with rate 𝛽 and rate 𝛿, respectively. The properties of 

probabilistic diffusion can be analyzed by using the continuous Markov chain theory.  

Node 𝑖  has either susceptible state 𝑋𝑖(𝑡) = 0 or infected state 𝑋𝑖(𝑡) = 1 at 

each time 𝑡. Each node changes its own state dynamically with the neighboring nodes 

that are connected to the node. Obeying the continuous Markov theory, it is assumed 

that the state vector of node 𝑖, 𝐗(𝑡 + ∆𝑡) = (𝑃𝑟[𝑋𝑖(𝑡 + ∆𝑡) = 0] , 𝑃𝑟[𝑋𝑖(𝑡 + ∆𝑡) =

1])T, can be obtained by using the current state vector 𝐗(t) and the stochastic matrix 

𝐏 as shown in equation (4.9). 
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𝐗(t + ∆t) = 𝐏𝐗(t), 

𝐏 = (
1 − 𝛽∗∆𝑡 𝛽∗∆𝑡
𝛿∆𝑡 1 − 𝛿∆𝑡

), 
(4.9) 

where it is assumed the transition probability from susceptible state to infected state 

(0 → 1) during time ∆𝑡, which is denoted by 𝛽(∆t), can be approximated by linear 

function 𝛽∗∆𝑡, if the time ∆𝑡 is sufficiently small. The recovering probability during 

the time ∆𝑡 is also assumed to be obtained by 𝛿∆𝑡. The aggregative infection-rate 𝛽∗ 

is estimated by the state of neighboring nodes as, 

 𝛽∗ = 𝛽∑𝑎𝑖𝑗1{𝑋𝑗(𝑡)=1}

𝑁

𝑗=1

,  (4.10) 

where the indicator function 1{𝑥} equals 1 if the event x is true, else it equals zero. 

Equality of equation (4.10) holds theoretically when the infection rate 𝛽 is sufficiently 

small. The coefficient 𝑎𝑖𝑗 is element of the adjacency matrix 𝐀 of the network. 

The element p𝑖,𝑗 of the 𝑖 th row and 𝑗 th column in the matrix 𝐏 represents 

transition probability from state 𝑖 to state 𝑗 during the infinitesimal time ∆𝑡. The 

matrix 𝐏 can be decomposed as, 

 𝐏 = (
1 0
0 1

) + (
−𝛽∗ 𝛽∗

𝛿 −𝛿
)∆t = 𝐈 + 𝐐 ∆t, (4.11) 

where 𝐈 denotes the identity matrix and the matrix 𝐐 is called infinitesimal generator 

or transition matrix. If the process defined by equation (4.11) is applied to probabilistic 

diffusion directly, the explosion of problem space will occur: there can be 2𝑁 − 1 

states because each node has either susceptible or infected Xi(t) = {0 or 1}. Hence, 

mean approximation is used to avoid the explosion of problem space [102]; 

𝑣𝑖(𝑡) = 𝑃𝑟[𝑋𝑖(𝑡) = 1] is used instead of 1{𝑋𝑗(𝑡)=1}.  

Then, equation (4.11) can be rewritten in terms of differential equation as, 

 
𝑑𝑣𝑖(𝑡)

𝑑𝑡
= (1 − 𝑣𝑖(𝑡))𝛽∑𝑎𝑖𝑗𝑣𝑗(𝑡)

𝑁

𝑗=1

− 𝑣𝑖(𝑡)𝛿. (4.12) 

From equation (4.12), 𝑣𝑖(∞) can be obtained at a steady state 𝑑𝑣𝑖(𝑡)/𝑑𝑡 = 0 as, 

 𝑣𝑖(∞) = 1 −
1

1 + 𝜏∑ 𝑎𝑖𝑗𝑣𝑗(∞)
𝑁
𝑗=1

. (4.13) 

Define 𝐕(𝑡) = (𝑣1(𝑡), 𝑣2(𝑡), 𝑣3(𝑡),⋯ , 𝑣𝑁(𝑡))
𝑇

, the transmission rate of all 

nodes can be written from equation (4.12) as, 
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d𝐕(𝑡)

𝑑𝑡
= 𝛽𝐀𝐕(𝑡) − diag(𝑣𝑖(𝑡))(𝛽𝐀𝐕(𝑡) + 𝛿𝑢), (4.14) 

where 𝑢 is the all-one vector and diag(𝑣𝑖(𝑡)) is the diagonal matrix with elements 

𝑣1(𝑡), 𝑣2(𝑡), 𝑣3(𝑡),⋯ , 𝑣𝑁(𝑡).  

In a steady state; d𝐕(∞)/𝑑𝑡 = 0, then the equation (4.14) can be rewritten as, 

 𝐀𝐕(∞) − diag(𝑣𝑖(∞)) (𝐀𝐕(∞) +
1

𝜏
𝑢) = 0. (4.15) 

Define γ ≡ 𝐀𝐕(∞) +
1

𝜏
𝑢, then equation (4.15) can be transformed to 

 γ −
1

𝜏
𝑢 = diag(𝑣𝑖(∞))𝛾, (4.16) 

or 

 (𝐈 − diag(𝑣𝑖(∞)))γ =
1

𝜏
𝑢. (4.17) 

Ignoring the extreme case (𝑣𝑖(∞) = 1), the matrix 𝐈 − diag(𝑣𝑖(∞)) is invertible. 

Equation (4.17) can be solved for γ as, 

 γ =
1

𝜏
diag (

1

1 − 𝑣𝑖(∞)
)𝑢. (4.18) 

From the definition of γ and equation (4.18), equation (4.19) is obtained. 

 𝐀𝐕(∞) =
1

𝜏
diag (

1

1 − 𝑣𝑖(∞)
− 1)𝑢. (4.19) 

The diagonal elements of right hand diagonal matrix are the summation of the 

geometric series as shown in equation (4.20), which are converged when the 

v𝑖(∞) < 1. 

 
1

1 − 𝑣𝑖(∞)
− 1 =

𝑣𝑖(∞)

1 − 𝑣𝑖(∞)
↔∑𝑣𝑖(∞)

𝑘

∞

𝑘=1

. (4.20) 

Then, steady-state equation is obtained from equation (4.19) and equation (4.20) as, 

 𝐀𝐕(∞) =
1

𝜏
∑𝐕(∞)𝑘
∞

𝑘=1

=
1

𝜏
𝐕(∞) +

1

𝜏
∑𝐕(∞)𝑘
∞

𝑘=2

. (4.21) 

In order to explore the tipping point of relative diffusion rate 𝜏𝑐 , it is set that 

𝐕(∞) = 𝜀𝑥 (𝜏 = 𝜏𝑐 + 𝜀) in equation (4.21), where 𝑥 is the column vector that is 

linearly dependent of 𝐕(∞). The following equation (4.22) is obtained. 

 
1

𝜏
𝑥 +

1

𝜏
𝜀𝑥2 + 𝑜(𝜀2) = 𝐀𝑥. (4.22) 

When 𝜀 is sufficiently small in equation (4.22), the second and the third term in left 
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side are negligible, and equation (4.23) can be obtained. 

 
1

𝜏
𝑥 = 𝐀𝑥. (4.23) 

The equation (4.23) shows that 1/τ is eigenvalue of the adjacency matrix 𝐀 and 

the 𝑥 is eigenvector (steady-state vector) of the matrix 𝐀. From the Perron-Frobenius 

theorem, the maximum eigenvalue 𝜆𝑚𝑎𝑥(𝐀) of the adjacency matrix 𝐀 is positive, of 

which the multiplicity is one, and only corresponding eigenvector is positive 

eigenvector. Then, 1/𝜏 = 𝜆𝑚𝑎𝑥(𝐀) and x is corresponding eigenvector of 𝜆𝑚𝑎𝑥(𝐀). 

If 𝜏 < 1/𝜆𝑚𝑎𝑥(𝐀), there is only effective solution 𝑥 = 𝟎. If 𝜏 > 1/𝜆𝑚𝑎𝑥(A), the 

effects of the second and third term of equation (4.22) are not negligible and there is 

positive steady-state vector. Therefore, the tipping point of relative diffusion rate 𝜏𝑐 

can be obtained as, 

 𝜏𝑐 =
1

𝜆𝑚𝑎𝑥(𝐀)
. (4.24) 

Equation (4.24) implies that a network with larger maximum eigenvalue 𝜆𝑚𝑎𝑥(𝐀) is 

more susceptible to probabilistic diffusion. 

Furthermore it is also clear that nodes with large eigenvector centrality 𝑐𝑖, which 

is 𝑖-th element of the eigenvector of 𝜆𝑚𝑎𝑥(𝐀), will be infected fast and the diffusion 

starts from these nodes. 

The advantage of the continuous markov chain model is that there is no 

assumption on the network topology and then it can be applied to arbitrary networks. 

The model uses only mean approximation about the state of each node 1{𝑋𝑗(𝑡)=1} →

𝑃𝑟 [𝑋𝑗(𝑡) = 1]. The influence of the approximation, however, is relatively small when 

the network has sufficient large number of nodes. 

4.1.4 Properties of probabilistic diffusion dynamics 

In probabilistic diffusion process, the infection processes of each infected node toward 

neighboring uninfected nodes are independent. Then, 𝑝𝑖 the probability of un infected 

node 𝑖 to become infected by neighboring infected nodes is formulated as, 

 𝑝𝑖 = 1 − (1 − 𝛽)
𝑘 ,  (4.25) 

where 𝑘 is the number of neighboring infected nodes of node 𝑖. Figure 4.2 shows the 

probability of node 𝑖 to become infected as a function of the number of neighboring 

infected nodes k. The point of this figure is that the probability of infection 𝑝𝑖 is not 

zero even if there is only one infected node. Another point is that the accumulation of 

infected nodes extends the infection probability nonlinearly. Then, a hub node is very 

susceptible to the infection because the node has many pathways (links) to be attached 

to infected nodes. After the infection of a hub node, the hub node attempt to infect 

many neighboring nodes and works as a super spreader of virus.  
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Figure 4.2 The probability of node 𝑖  to be infected is plotted as a function of 

neighboring infected nodes, where 𝛽 the infection probability of each infected node is 

0.1. 

The global effects of network topology can be seen as phase transition of the 

diffusion in probabilistic diffusion processes (Figure 4.3). If the relative infection rate 

𝜏 = 𝛽/𝛿 is not larger than the tipping point 𝜏𝑐, the diffusion process in a absorbing 

phase, and infected nodes will disappear. In the contrary case: 𝜏 > 𝜏𝑐, the diffusion 

process is in active phase, and the infected nodes will survive, which spread into a 

finite fraction of nodes. The tipping point is changed by network topologies. A 

completely isolated graph where any nodes have no connection to others has infinite 

size of 𝜏𝑐  and a complete graph has very small 𝜏𝑐 . On the other hand the real 

networks have intermediate size of 𝜏𝑐 between the two extreme cases. The question of 

the tipping point is central in epidemics. 

The difference of network topology makes different pathways to reach a steady 

state of diffusion processes, even if a steady state is same. In addition to studies on 

tipping point 𝜏𝑐, the study on how network topology affects the time evolution is very 

important to predict a future state of nodes or deal with it effectively. For example, in 

the case an outbreak of foot-and-mouth disease, if the diffusion process draws shallow 

logistic curve, there is some time before extensive outbreak to prevent the spread of the 

disease: setting up no-go zones, spraying disinfectant at a farm or restriction of 

shipments, after the early detection of it. The study on the relationship between 

network topology and the time evolution of diffusion processes may be also applied 

into other applications: for example, the estimation of the underlying network topology 

from observed data (diffusion processes), which is usually unclear and essential for 

deep understanding of the dynamics (ex. human relationship in information cascade or 

sexual relationship in the spreading of AIDS). 
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Figure 4.3 The fraction of infected nodes is plotted as a function of the normalized 

infection rate 𝛽/𝛿/𝜏𝑐 as the results of probabilistic diffusion simulation on random 

network with 500 nodes and 1000 links, where curing rate 𝛿 is 0.1 at all cases. 𝜏𝑐 is 

the inverse of maximum eigenvalue of adjacency matrix of CPA network proposed in 

following subsection 4.4.2. 

Probabilistic diffusion on networks by equation (4.14) can be rewritten as 

 
d𝐕(𝑡)

𝑑𝑡
= −𝛿𝐕(𝑡) + 𝛽𝐀diag(1 − 𝑣𝑖(𝑡))𝐕(𝑡). (4.26) 

From equation (4.26), if the infection rate 𝛽 = 0 or sufficiently small, the 

infection rate of each node decay exponentially from the initial infection rate 𝑽𝑜, as 

shown in equation (4.27). 

 𝐕(𝑡) = 𝑽𝑜𝑒
−𝛿𝑡. (4.27) 

If the relative infection rate 𝜏(= 𝛽/𝛿) is larger than the tipping point 𝜏𝑐 to take 

off in terms of the fraction of infected nodes at a steady state, the time evolution of the 

fraction of infected nodes is seemed to show logistic curve due to the symmetry of the 

equations between equation (4.3) and equation (4.26).  

The fraction of infected nodes y(t) is obtained as 

 y(t) =
1

𝑁
uT𝐕(𝑡). (4.28) 

where 𝑁 denotes the number of nodes in the network. 

Figure 4.4 shows the time evolution of the diffusion on random network, as results 

of numerical calculation of equation (4.26) and confirms the intuition. In the 

calculation, infection vector is initialized: infection vector 𝐕(𝑡 = 0) that has only one 

1 element on a node with largest degree and other elements equal 0. 

The changing rate of the fraction of infected nodes at an early stage from a trigger 
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of diffusion implies how much time is left for the countermeasures to prevent 

pandemic, if the diffusion is a bad event. When the infection rate of each node 𝑣𝑖(𝑡) is 

not so large, nonlinear term 𝛽𝐀diag(𝑣𝑖(𝑡))𝐕(𝑡) in equation (4.26) is negligible. At 

that time, the changing rate of the fraction of infected nodes is given by 

 
d𝐕(𝑡)

𝑑𝑡
= (𝛽𝐀 − 𝛿)𝐕(𝑡), (4.29) 

and it can be solved for 𝐕(𝑡) as shown in equation (4.30). 

 𝐕(𝑡) = exp((𝛽𝐀 − 𝛿𝐈)𝑡)𝐕(0). (4.30) 

The term exp((𝛽𝐀 − 𝛿)𝑡) can be rewritten as ∑ exp((𝛽𝜆𝑖(𝐀) − 𝛿)𝑡)𝐳𝑖𝐳𝑖
𝑇

i  where 

𝜆𝑖(𝐀) and 𝐳𝑖  are i-th eigenvalue of the adjacency matrix 𝐀  and corresponding 

eigenvectors corresponding to each eigenvalue from the maclaurin expansion of 

exp((𝛽𝐀 − 𝛿)𝑡). From using the expression in equation (4.30), it is clarified how the 

difference of eigenvalues of the adjacency matrix affects the time evolution as shown 

in equation (4.31). 

 𝐕(𝑡) =∑ exp((𝛽λ𝑖(𝐀) − δ)t)𝐳𝑖𝐳𝑖
T

𝑖
𝐕(0). (4.31) 

The eigenvalue 𝜆𝑖(𝐀)  that meets 𝛽𝜆𝑖(𝐀) − 𝛿 > 0  and corresponding 

eigenvector 𝐳𝑖 contributes the spreading of the diffusion, and the impacts of the rest of 

eigenvalues (especially negative ones) exponentially decrease along with the time step. 

The analysis shows the meaning of the size of infection rate 𝛽 and curing rate δ that 

decides how many positive eigenvalues of the adjacency matrix works positively and 

the impact of them toward the diffusion dynamics. Especially, the influence of the 

eigenvector of the maximum eigenvalue is dominant, because it is the only eigenvector 

with all positive components and all eigenvectors are normalized such as 𝐳i𝐳i
T = 1 ∀𝑖. 

 

Figure 4.4 Time evolution of the fraction of infected nodes on random networks. Each 

point on line is a result of numerical calculation of equation (4.26). The random 

network has 500 nodes and 1000 links. One largest hub node is infected as a trigger of 

diffusion. Infection rate is 𝛽 = 0.097 and curing rate is 𝛿 = 0.1. 
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4.2 Evolutionary optimization of diffusion networks 

In this dissertation, one of the main questions is “What kind of the network topology is 

best for the maximization of diffusion process?” The simple answer is complete graph 

having the maximum eigenvalue 𝜆1(𝐀) = 𝑁 − 1, in which each node is connected to 

every other nodes. However, it becomes unrealistic to make complete graph with the 

increase of the size of network. Because it implies for example, a lot of costs is needed 

for the setting and the maintenance of links. Therefore, many networks in our life, such 

as social network, railway network and neuron network, adjust balance between the 

performance of the network and the number of links.  

Let G be a connected graph with 𝑁 nodes and 𝐿 links. The simplest upper 

bound and lower bound for the maximum eigenvalue 𝜆1(𝐀)  of the associated 

adjacency matrix 𝐀 of network 𝐺 is formulated as, 

 〈𝑘〉 ≤ 𝜆1(𝐀) ≤ 𝑑𝑚𝑎𝑥 , (4.32) 

where 〈𝑘〉 represents average degree of the network, and 𝑑𝑚𝑎𝑥 represents maximum 

degree of nodes in the network. The left side equality holds for a regular graph, in 

which all nodes have same number of links 〈𝑘〉, and the right side equality holds for a 

complete graph. An upper bound of the maximum eigenvalue from the numbers of 

nodes and links is also found by Hong [103] as, 

 𝜆1(𝐀) ≤ √2𝐿 − 𝑁 + 1. (4.33) 

From these equations (equation (4.32) and equation (4.33)), hub nodes, which 

makes 𝑑𝑚𝑎𝑥 large, and sufficient number of links (𝐿) is necessary to create a network 

having large maximum eigenvalue to maximize probabilistic diffusion.  

A network is evaluated by maximum eigenvalue 𝜆1(𝐀) and average degree 〈𝑘〉, 

which is associated with the number of links 𝐿 (〈𝑘〉 = 2𝐿/𝑁, where 𝑁 denotes the 

number of nodes), and then the objective function for the maximization of probabilistic 

diffusion, which should be minimized by GA, is defined as, 

 𝐸 = 𝜔
1

𝜆1(𝐀)
+ (1 − 𝜔)

〈𝑘〉

𝑁 − 1
, (4.34) 

where 𝜔(0 ≤ 𝜔 ≤ 1) is a parameter controlling the linear combination of the inverse 

of maximum eigenvalue 𝜆1(𝐀)  and normalized average degree 〈𝑘〉/(𝑁 − 1) . 

Therefore, the objective function becomes the following equation (4.35) when the 

controlling parameter is set as 𝜔 = 1 in equation (4.34). 

 𝐸 =
1

𝜆1(𝐀)
. (4.35) 

The optimal network by the objective function (equation (4.35)) is complete graph, 

which has a largest maximum eigenvalue 𝑁 − 1 with the average degree 𝑁 − 1.  

On the other hand, in the case setting 𝜔 = 0 in equation (4.34), the objective 

function becomes as, 



33 

 

 𝐸 =
〈𝑘〉

𝑁 − 1
. (4.36) 

The optimized network by the objective function (equation (4.36)) is a tree type 

network with average degree close to 2(𝑁 − 1)/𝑁 ≃ 2.  

The minimization of objective function 𝐸  (equation (4.34)) means the 

maximization of the maximum eigenvalue and the minimization of the average degree 

simultaneously. Here the connected graph is only considered, and the average degree of 

the network 〈𝑘〉 has a value from 2(𝑁 − 1)/𝑁 to 𝑁 − 1. In order to make the 

balance of the range of value between two terms in equation (4.34), the average degree 

is normalized by 𝑁 − 1. 

“What kind of network is optimal to prevent the diffusion dynamics?” is another 

main question of this dissertation. From the above arguments, the network with 

smallest maximum eigenvalue of the adjacency matrix minimizes probabilistic 

diffusion. For that, the following equation (4.37) is used as objective function. 

 𝐸 = 𝜔
𝜆1(𝐴)

𝑁 − 1
+ (1 − 𝜔)

1

〈𝑘〉
. (4.37) 

The evolutionary network optimization by genetic algorithm with two objective 

functions in equation (4.34) and equation (4.37) are used to find optimal networks for 

the maximization or minimization of probabilistic diffusion. The parameters on genetic 

algorithm MGG [104] is shown in Table 4.1.  

Figure 4.5 shows the maximum eigenvalue of optimized networks using GA by 

changing controlling parameter 𝜔 in equation (4.34) and equation (4.37), which is 

compared to homogeneous network (random regular network), random network and 

scale free network with same or similar average degree. The optimized networks for 

maximization of probabilistic diffusion (GA (maximization)) have much larger 

maximum eigenvalues compared to that of scale free networks. It implies GA networks 

have lower threshold for probabilistic diffusion than that of scale free networks, which 

are supposed to be optimal to drive the diffusion easily. On the other hand, the 

optimized networks for minimization of probabilistic diffusion (GA (minimization)) 

have maximum eigenvalue as small as homogeneous network. The proposed 

optimization method can create networks with smallest maximum eigenvalue even if 

the average degree 〈𝑘〉 is not integer. 
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Table 4.1 Parameters used for GA optimization 

Genetic algorithm model Minimum generation gap model [104] 

Network size (The number of nodes) 500 

Initial network topology of populations Random network 

Initial population size 100 

‘Child’ population size 100 

Objective function for the maximization 

of probabilistic diffusion 
E = ω

1

𝜆1(𝐀)
+ (1 − 𝜔)

〈𝑘〉

𝑁 − 1
 

Objective function for minimization of 

probabilistic diffusion 
𝐸 = 𝜔

𝜆1(𝐀)

𝑁 − 1
+ (1 − 𝜔)

1

〈𝑘〉
 

Crossover Uniform crossover 

Mutation Not used 

Selection An elite selection strategy 

The number of evaluations Over 600,000 

 

 

 

 
Figure 4.5 Maximum eigenvalue of optimized networks by GA (𝜆1) is plotted as a 

function of average degree, which is compared to that of scale free network by BA 

model (SF(BA)), random network (RND), homogeneous network (random regular 

network (Homogeneous)). The value of parameter 𝜔 of equation (4.34) and equation 

(4.37) is shown at the side of each result.  
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4.3 Topological properties of evolutionary optimized networks 

This section considers new question "What kind of network topology did GA 

optimization generate for maximizing or minimizing probabilistic diffusion?”.  

4.3.1 Optimal networks for maximizing probabilistic diffusion 

In this subsection, I show topological properties of evolutionary optimized networks 

for the maximization of probabilistic diffusion. Let 𝑇  be the ratio of maximum 

eigenvalue of optimized network 𝜆1
GA to that of random network 𝜆1

R which has same 

average degree as shown in equation (4.38).  

 𝑇 =
𝜆1
GA

𝜆1
R . (4.38) 

In Figure 4.6, the ratio 𝑇 is plotted as a function of average degree of the 

network. It is shown that the effectiveness 𝑇 of the evolutionary optimization is 

changed with the average degree, and the optimized network at 𝜔 = 0.4 in equation 

(4.34) has the largest ratio 𝑇 = 2.9. It means at 𝜔 = 0.4, the GA method created most 

effective network compared to networks at other conditions in terms of the size of 

maximum eigenvalue. Then the optimized network at 𝜔 = 0.4  is suitable to 

understand the optimal topology for the maximizing probabilistic diffusion. Several  

topological analyses on the optimized network are done in the following paragraphs. 

The topology of an optimized network at 𝜔 = 0.4 in equation (4.34) is shown in 

Figure 4.7. Depicting network is usually useful method to understand how nodes are 

interconnected by links intuitively. It shows topological properties: a dense core at the 

center of the network, in which many links are wired to connect nodes forming a core, 

and many peripheral nodes with a few links connected to the center core. However, it is 

still obscure on the interconnectivity between nodes, which is important for the 

understanding of the topology. 

Figure 4.8 shows how nodes are distributed on each networks of Table 4.2. In 

optimized network and scale free network, the over 70% nodes are within two hop 

distance from a hub node, which has most number of links. Figure 4.9 shows the 

degree distribution of the optimized network at 𝜔 = 0.4 in equation (4.34). It shows 

the optimized network (GA) has a few hub nodes and many nodes with a few links as 

same as scale free network (SF(BA)) has.  

Figure 4.10, Figure 4.11 and Figure 4.12 show degree of each node located at each 

hop distance from a largest hub node of networks in Table 4.2. They show hub nodes in 

optimized network are located around the largest hub node like scale free network. In 

random network, those nodes are separated.  

Finally the rich-club connectivity [61] is used to characterize network topology, 

which shows link density between hub nodes. The rich-club connectivity is calculated 

as follows. In the original paper [61], nodes are divided into groups with same degree 

and look at interconnectivity between those groups. However, in this dissertation, 

nodes in the network are sorted by decreasing degrees and look at interconnectivity 
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between nodes to see the detail of the topology. The node rank 𝑟 denotes the position 

of a node on the ordered list. 𝑟 is normalized by the total number of nodes 𝑁. 

The rich-club connectivity 𝜙(𝑟) is defined as the ratio of the total actual number 

of links 𝐿(𝑟) to the maximum possible number of links between members of the 

rich-club (𝑛(𝑟) nodes), as shown in equation (4.39). 

 𝜙(𝑟) =
L(r)

 n(r)C2  
.  (4.39) 

As an example, the rich-club connectivity 𝜙(𝑟)  of optimized network at 

ω = 0.4 in equation (4.34) is calculated and compared it to both scale free network 

and random network in Table 4.2 (Figure 4.13). It shows the rich-club connectivity 

𝜙(𝑟), which is a function of cumulative fraction of nodes 𝑟, on a log-log scale. As 

shown, hub nodes of the optimized network by GA are connected each other very well. 

The top 10% rich nodes in optimized network have 33.6% of the maximum possible 

number of links, compared to 𝜙(𝑟 = 10%) = 14.2% in scale free network and 

𝜙(r = 10%) = 5.5% of random network.  

From the above results, optimized networks by GA and scale-free networks share 

several network properties: the existence of hub nodes and the deployment of hub 

nodes around the nodes with largest degree. However, optimized networks only have 

remarkable large rich-club connectivity.  

 

 

 

Figure 4.6 Ratio T of maximum eigenvalue of optimised networks to random networks 

with the same average degree is plotted as a function of average degree 〈𝑘〉. The value 

of parameter 𝜔 of equation (4.34) is shown at the side of each result.  
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Figure 4.7 The snapshot of the optimized network at 𝜔 = 0.4 in equation (4.34) for 

maximization of probabilistic diffusion (500 nodes, 1984 links (〈𝑘〉 = 7.936)) 

 

 

 

 

Figure 4.8 The fraction of nodes is plotted as a function of the hop distance from a 

node with largest degree in optimized network by GA (ω = 0.4 in equation (4.34)) (500 

nodes, 1984 links (〈𝑘〉 = 7.936)), which is compared to a random network and a scale 

free network with the same average degree.  
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Table 4.2 The property of networks 

 Evolutionary optimized network 

at (𝝎 = 𝟎. 𝟑) in equation (4.34) 

Scale-free 

network 

Random 

network 

The number of node 500 500 500 

The number of link 1984 1984 1984 

The average 

distance 
3.2 2.9 3.2 

The maximum 

eigenvalue of 

adjacency matrix 

25.7 16.0 9.0 

 

 

 

 

Figure 4.9 The degree distribution of an optimized network by GA (ω = 0.4 in equation 

(4.34)) (500 nodes, 1984 links (〈𝑘〉 = 7.936)) is shown, which is compared to a 

random network and a scale free network with the same average degree. 
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Figure 4.10 A node degree is plotted as a function of the hop distance from a node with 

largest degree in an optimized network by GA (ω = 0.4 in equation (4.34)) (500 nodes, 

1984 links (〈𝑘〉 = 7.936)) Notes: The size of each circle is drawn in proportion to the 

number of nodes plotted in the same position. The size of circle at 0 distance means 

there is one node with about 108 degrees. 

 

 

 

Figure 4.11 A node degree is plotted as a function of the hop distance from a node with 

largest degree in a scale free network (SF (BA)) with 500 nodes and 1984 links 

(〈𝑘〉 = 7.936) Notes: The size of each circle is drawn in proportion to the number of 

nodes. The size of circle at 0 distance means there is one node with 81 degrees. 
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Figure 4.12 A node degree is plotted as a function of the hop distance from a node with 

largest degree in a random network (RND) with 500 nodes and 1984 links (〈𝑘〉 =

7.936) Notes: The size of each circle is drawn in proportion to the number of nodes. 

The size of circle at 0 distance means there is one node with 21 degrees. 

 

 

 

Figure 4.13 Rich club connectivity of networks in Table 4.2 (500 nodes, 1984 links 

(〈𝑘〉 = 7.936)), which is link density between nodes that rank in top 𝑟% in decreasing 

order in terms of degree, is plotted as a function of 𝑟.  
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4.3.2 Optimal networks for minimizing probabilistic diffusion 

In Figure 4.14 and Figure 4.15, the degree distribution of evolutionary optimized 

networks for the minimization of probabilistic diffusion is plotted, of which the number 

of node is 500 and the average degree is 〈𝑘〉 = 10.6 and 〈𝑘〉 = 15.9 respectively. 

They show optimized networks are almost regular network, in which many nodes have 

same number of links. The standard deviation of their degree distributions is very small, 

which are 0.51 (〈𝑘〉 = 10.6) and 0.37 (〈𝑘〉 = 15.9) respectively. Although the k random 

regular network, of which average degree is k, is known as network having smallest 

maximum eigenvalue 𝑘 − 1, there is no method to make network having smallest 

maximum eigenvalue when the average degree is not integer number. The proposed 

evolutionary network optimization can create optimal networks with smallest 

maximum eigenvalue under arbitrary average degree. 

Note that homogeneous (random regular) network is used as optimal network for 

the minimization of probabilistic diffusion in the following simulations, because the 

average degree is usually set as an integer. 

 

 

 

 

Figure 4.14 The degree distribution of an optimized network by GA (ω = 0.9 in 

equation (4.37)) (500 nodes, 2646 links (〈𝑘〉 = 10.6)) is shown, which is compared to a 

random network with same average degree. 
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Figure 4.15 The degree distribution of an optimized network by GA (ω = 0.8 in 

equation (4.37)) (500 nodes, 3968 links (〈𝑘〉 = 15.9)) is shown, which is compared to a 

random network with same average degree.  
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4.4 Heuristic models for designing a large-scale network 

Evolutionary network optimization (on a PC) can be applied to small-scale networks  

(~500 nodes), because the time complexity increases with the number of nodes. In 

this section, two heuristic models are proposed to create large-scale networks for 

maximizing probabilistic diffusion.  

4.4.1 The KN model 

The Komatsu-Namatame (KN) network model creates a network which has hub nodes 

and the cluster of them (Figure 4.16). These topological features are observed in 

evolutionary optimized networks for the maximizing of probabilistic diffusion. The KN 

model can be classified to one of growing network models, in which constant number 

of nodes and links are introduced into a current network at each time step (Figure 

4.17).  

At first, the small network is prepared as initial network. A new node 𝑖 is 

introduced at each discrete time 𝑡 = 𝑖  and it is connected to a node by using 

preferential attachment with the probability Pr(𝑘) as shown in equation (4.40). Under 

the preferential attachment scheme, a node with many links has large probability to be 

connected to a new node and this mechanism makes hub nodes. 

 Pr(𝑘) =
𝑑𝑖
∑ 𝑑𝑖𝑖

 . (4.40) 

 

 

Figure 4.16 KN network (100 nodes and 194 links): The cluster of hub nodes is formed 

at the center of the network. 
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Figure 4.17 The procedure of growing networks by the proposed KN model 

At the same time 𝑡 = 𝑖, 𝑝 new links are introduced and they are used to connect 

two nodes that are not connected directly. A pair of nodes to be connected is also 

selected by a preferential attachment mechanism. Then, those links are usually used to 

connect a pair of hub nodes and the procedure makes cluster of hub nodes in the 

network. As a result, KN network has large rich club connectivity that is observed in 

optimized network for maximizing probabilistic diffusion (Figure 4.18). 

By using mean field theory or master equation method, the degree distribution 

𝑝(𝑘) of KN model networks can be obtained as, 

 𝑝(𝑘) = (1 +
1

2𝑝 + 1
)𝑘

−(2+
1

2𝑝+1
)
 . (4.41) 

Then, 𝑝(𝑘) obeys power law and its power index converges to 2 along with the 

increase of the number of 𝑝. Let N denote the number of introduced nodes until now 

and 〈𝑘〉 denote the average degree of the network. The relationship between 〈𝑘〉 and 

𝑝 can be written as shown in equation (4.42) when the N is sufficiently large. 

 〈𝑘〉 =
2𝑁(1 + 𝑝) + 𝑙

𝑁 + 𝑛
≃
2𝑁(1 + 𝑝)

𝑁
= 2(1 + 𝑝). (4.42) 

where n and l denotes the number of nodes and links in the initial network respectively. 

The number of introduced links at each time 𝑝 decides the average number of links 

and the power index of the degree distribution of the KN model networks, which 

changes from 3 (𝑝 = 0) to 2 (𝑝 = ∞). 
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Figure 4.18 Rich club connectivity of networks in Table 4.2 and KN network that has 

same number of nods and links with other networks (500 nodes, 1984 links (〈𝑘〉 =

7.936)). 

 

4.4.2 The partial complete graph model 

The partial complete graph model is the extreme case of the KN network model, which 

has most dense cluster of hub nodes. In other words, a part of the network is complete 

graph 𝐾𝑛 where 𝑛 represents the number of nodes in the complete graph. This type 

of network can be seen in mathematical study to maximize the spectrum radius of the 

eigenvalue of the adjacency matrix.  

The model consists of only two steps to build a network, as shown in Figure 4.19. 

Let N denote the number of nodes and L denote the number of links in the network. At 

first, the n-complete graph 𝐾𝑛 is made as a core of a network, in which n nodes are 

connected each other completely and each node has 𝑛 − 1 degrees. Any node needs at 

least one link to connect itself to other node. There is 𝐶2𝑛  links in the complete graph 

𝐾𝑛, and the formula on 𝐿 can be obtained as, 

 𝐿 =
𝑛(𝑛 − 1)

2
+ 𝑁 − 𝑛. (4.43) 

By isolating 𝑛, the maximum size of complete graph 𝑛𝑚𝑎𝑥 is obtained as, 
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 𝑛𝑚𝑎𝑥 = ⌊
3 + √9 + 8(𝐿 − 𝑁)

2
⌋, (4.44) 

where the floor function ⌊𝑥⌋ is used to get maximum integer limited to 𝑥  ex. 

⌊20.2⌋ = 20. 

Secondly, the rest of nodes 𝑁 − 𝑛𝑚𝑎𝑥 are attached to the complete graph 𝐾𝑛𝑚𝑎𝑥 

by using arbitrary methods. Here, two type methods are considered; one is preferential 

attachment (Complete graph and Preferential Attachment: CPA) and another one is 

random attachment (Complete graph and Random Attachment: CRA). Figure 4.20 

show the examples of CPA and CRA, which have 100 nodes and 200 links. All 

peripheral nodes are attached to one of nodes in the complete graph or to other 

peripheral nodes. 

The center complete-graph works to maximize the number of contact processes 

under the fixed network resources (nodes and links), and then diffusion processes is 

easily in active phase, which is defined in Figure 4.3, even if it has small relative 

infection rate 𝜏 (= 𝛽/𝛿). Surprisingly, the difference of methods to attach peripheral 

nodes to the complete graph does not affect the tipping point of the network for 

probabilistic diffusion. It is confirmed by the comparison of maximum eigenvalue and 

numerical simulations in the following sections. 

 

 

Figure 4.19 The procedures of building proposed networks. 
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(a) The network that consists of complete graph and preferentially attached nodes 

(CPA) 

 

 

(b) The network that consists of complete graph and randomly attached nodes (CRA) 

Figure 4.20 The least susceptible networks: the networks have 100 nodes and 200 links. 

the number of nodes in the center core is 16.  
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4.4.3 Comparison of maximum eigenvalues 

The maximum eigenvalue of the adjacency matrix defines the tipping points for 

probabilistic diffusion to take off, and the size depends on the extent of the dense 

cluster in networks (Figure 4.21). CPA and CRA has complete graph at the center of the 

network, of which the size is maximized in those networks, and their maximum 

eigenvalue will converges to the theoretical upper limit along with the average degree. 

The difference of how nodes, which are not member of complete graph, are added in 

step 2 (Figure 4.19) will make little change in the size of maximum eigenvalue 

drastically. From the results, it is clear that the maximum eigenvalue of the adjacency 

matrix is an index showing the existence of cluster of hub nodes. The difference on the 

method to connect peripheral nodes to the complete graph does not affect tipping point, 

but it affects communication efficiency (the average hop distance) between nodes 

(Figure 4.22). The CPA networks have relatively small average hop distance compared 

to other networks having same average degree, but the CRA networks have largest 

average hop distance. 

KN network also has relatively large maximum eigenvalue, which is larger than 

maximum eigenvalue of scale free network. The scale free network is usually said it is 

most susceptible to probabilistic diffusion (ex. virus spreading on social or computer 

networks), because the threshold of pandemic on scale free network closes to zero 

when the size of network (the number of nodes in network) diverges. In the real world, 

however, the network size is limited to some constant number, which is usually due to 

the network resource or time restriction. Under such situation, the difference of the 

threshold for spreading between networks having degree distribution with power law 

(KN and SF (BA)) becomes clarified, which is the inverse number of maximum 

eigenvalue. It is known that the Internet has rich club connectivity (the cluster of hub 

nodes). The results of KN networks show such topological feature of Internet makes it 

more susceptible to virus spreading than previously believed. 

Scale free networks by Balabási-Albert model (SF(BA)) is used in many papers as 

benchmark networks with low threshold in probabilistic diffusion simulation. The 

maximum eigenvalue, however, is only 1.5 to 2 times larger than random networks 

(RND), which are thought to be robust to probabilistic diffusion. This results implies it 

is needed to evaluate the network properties by not only the type of degree distribution 

and but also appropriate index (the maximum eigenvalue) that influences the network 

dynamics directly. 

The increase of maximum eigenvalue of the homogeneous networks with the 

average degrees shows the pandemic can occur on any kind of networks except special 

networks, of which the average degree is constant (ex. line graph). The lower limit of 

maximum eigenvalue is bounded by average degree, and then the increase of the 

average degree decreases the threshold of the pandemic. 
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Figure 4.21 The maximum eigenvalue of adjacency matrix of each network with 500 

nodes is plotted as a function of the average degree of it: CPA: Complete graph and 

preferential attachment, CRA: Complete graph and random attachment, KN: KN 

network, SF(BA): Scale free network by Balabási-Albert model, RND: Random 

network, Homogeneous; Regular random network, Theoretical upper limit is defined 

by equation (4.33). 

 

Figure 4.22 The average hop distance 𝑑 of each network is plotted as a function of the 

average degree: CPA: Complete graph and preferential attachment, CRA: Complete 

graph and random attachment, KN: KN network, SF(BA): Scale free network by 

Balabási-Albert model, RND: Random network, Homogeneous; Regular random 

network. 
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4.4.4 Diffusion thresholds 

The maximum eigenvalue 𝜆𝑚𝑎𝑥(𝐀) of adjacency matrix 𝐀 of network is dominant 

eigenvalue for probabilistic diffusion taking place on networks, because it decides the 

tipping point (= 1/λmax(𝐀)) (with SIS model) to take off and is related to how hub 

nodes are interconnected, which also affects the deterministic diffusion (it is discussed 

in Chapter 5). The maximum eigenvalue 𝜆𝑚𝑎𝑥(𝐀) is equal or larger than average 

degree 〈𝑘〉 and the value increases with the average degree. If the network has infinity 

nodes and certain average degree, the maximum eigenvalue also becomes infinity and 

it means the comparison of the maximum eigenvalue has no meaning because any 

network becomes diffusive with no threshold. For example, probabilistic diffusion can 

occur on even homogeneous network, which is least diffusive network when networks 

are compared under a finite network size.  

In the real world, however, the network size (the number of nodes) is finite due to 

several reasons including the finite network resources and the finite time of network 

design. In these cases, the maximum eigenvalue is not infinite and the comparison of it 

between networks is meaningful. Here, the new index is used, which is the normalized 

maximum eigenvalue, 〈𝑘〉/λmax(𝐀)  to capture the properties of how network 

topology affects process taking place on networks. The range of this index is given as, 

 0 <
〈𝑘〉

λmax(𝐀)
≤ 1. (4.45) 

The right hand equality holds when the network is completely homogeneous and the 

index becomes smallest when the network topology is partially compete graph like 

CPA and CRA. From topological point of view, the index shows how network is 

homogeneous. 

In Figure 4.23, the critical threshold value 𝜏𝑐 of SIS model of different networks 

that have different average degree from 4 to 30 is plotted as a function of 〈𝑘〉/

λmax(𝐀). From the results, it is clear that 𝜏𝑐 is changed linearly with the normalized 

maximum eigenvalue 〈𝑘〉/λmax(𝐀), and the network with less homogeneity becomes 

more diffusive when the network has same average degree. Along with the increase of 

〈𝑘〉/λmax(𝐀), the tipping point in any average degree cases are moved from bottom to 

top, because the value of the homogeneous network is largest 𝜏𝑐 = 1/𝜆𝑚𝑎𝑥(𝐀) =

1/〈𝑘〉 compared to other networks. The increase of average degree makes networks 

more homogeneous and finally all networks become complete graph, which is most 

diffusive network. 
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Figure 4.23 The critical threshold value 𝜏𝑐 of SIS model on different networks is 

plotted as a function of normalized maximum eigenvalue 〈𝑘〉/𝜆𝑚𝑎𝑥(𝐀).  
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4.5 Simulation on optimized networks 

In this section, a set of simulation results is given. The simulations are conducted to 

confirm diffusion processes will take off easily on networks by proposed models (CPA, 

CRA, KN), compared to scale-free network and random network.  

Scale-free networks used in this study are generated by Balabási-Albert model. 

Random graphs are generated by Erdos-Reny model. Each network has 500 nodes, and 

the average degree is 4. 

Each simulation begins with making only one node infected, which has most 

number of links in the network. Simulation proceeds in steps of one time unit. During 

each time step, all infected nodes attempt to infect each of its neighbors with 

probability 𝛽  simultaneously. In addition, every infected nodes go back to be 

susceptible again with probability 𝛿. The attempt of infection on a already infected 

node has no effect. Each simulation will be done when diffusion process is in a steady 

state 𝑑𝐼(𝑡)/𝑑𝑡 = 0. Unless otherwise specified, each simulation plot is averaged over 

100 individual runs. In each simulation, infection rate 𝛽 and recovering rate 𝛿 are set 

as, 

 𝛽 = 𝑆𝑐𝑜𝑟𝑒 ×
𝛿

𝜆1(𝐀𝐶𝑃𝐴)
, 𝛿 = 0.1, (4.46) 

where Score is a scaling parameter to decide infection rate based on the threshold 

𝜏c(= 1/(λ1 (𝐀𝐶𝑃𝐴) )) of a network which is a CPA network with largest maximum 

eigenvalue and same number of nodes and links. Score parameter is varied from 1 to 

100. 

During probabilistic diffusion processes by SIS model, the state of each node is 

changing between 𝑥𝑖 = 0 and 𝑥𝑖 = 1. When a relative infection rate 𝜏 = 𝛽/𝛿  is 

sufficiently small, all nodes becomes 𝑥𝑖 = 0, ∀𝑖 at a steady state. When 𝜏 is very 

large, a steady state of all nodes are 𝑥𝑖 = 1, ∀𝑖. Then, this simulation clarifies the 

tipping points of 𝜏∗ of each network and the behavior of probabilistic diffusion after 

𝜏 > 𝜏∗.  

In Figure 4.24, the fraction of infected nodes at a steady state on networks by 

proposed models is plotted as a function of score, which is compared to other networks. 

It is clear that each network has different tipping points 𝜏∗ , and the magnitude 

relationship is shown in equation (4.47), which is the same relationship of the inverse 

of maximum eigenvalue of each network. 

 𝜏𝐶𝑃𝐴
∗ = 𝜏𝐶𝑅𝐴

∗ < 𝜏𝐾𝑁
∗ < 𝜏𝑆𝐹(𝐵𝐴)

∗ < 𝜏𝑅𝑁𝐷
∗ < 𝜏𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠

∗ . (4.47) 

The network with the large maximum eigenvalue of the adjacency matrix is prone to 

probabilistic diffusion and the infection process will survive for a long time. In other 

words, the dense cluster is foothold for probabilistic diffusion to survive at a steady 

state. 

Many of recent studies make effort to estimate a tipping point value 𝜏∗ accurately, but 

in the real world the fraction of infected nodes is also important to 
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Figure 4.24 The fraction of informed nodes at steady state is plotted as a function of the 

score. Each network has 500 nodes and same average degree 〈𝑘〉 = 4. 

understand the diffusion processes. From the simulation results, even if 𝜏 exceeds a 

tipping point 𝜏𝑐, all nodes are not necessarily infected. In order to make all nodes 

infected, 𝜏  should be increased sufficiently. This result can be explained 

mathematically. The maximum eigenvalue is dominant when 𝜏 ≃ 𝜏∗, but it is need to 

consider the influence of following terms, which are more than second order, of the 

equation (4.47) when 𝜏 > 𝜏∗. 

Figure 4.25 shows the time evolution of the diffusion processes from an initial 

state (time = 0) to a steady state on networks having different epidemic threshold 𝜏𝑐. 

For example, in a case that diffusion is simulated with 𝛽 = 0.097 and δ = 0.1 

(Figure 4.25 (b)), if maximum eigenvalue that meets the condition λ1 (𝐀) ≥ 𝛿/𝛽 =

1.03, the diffusion will take off. The time evolution shows logistic curve (s-curve), 

which is also observed in the diffusion by Kephart and White model, and the exact 

curve of time evolution seems to depend on each network topology.  

From equation (4.31), it is clear that the spectrum of eigenvalues and the size of 

infection rate 𝛽 and curing rate δ decide the behavior of time evolution of diffusion 

processes. The network with large maximum eigenvalue has the tendency to have high 

changing rate of infected nodes at an early stage of the diffusion. In a case that the 

order of maximum eigenvalue between networks represents an order of rest of 

eigenvalue similarly, the changing rate of the fraction of infected nodes can be 

compared by the value of maximum eigenvalue. Figure 4.26 shows top 10 maximum 

eigenvalue of the adjacency matrix of networks. The magnitude relationship of 

maximum eigenvalue of SF(BA), RND, and Homogeneous networks shows the 
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relationship of following eigenvalue and then the order of changing rate of infected 

nodes is the same to the order of maximum eigenvalue. In any other case, however, the 

magnitude relationship of maximum eigenvalue of networks necessarily does not 

represent the order of the rest of eigenvalues, and it is difficult to discriminate the 

changing rate by maximum eigenvalue simply. The CRA network has larger maximum 

eigenvalue compared to KN network, but the rest of eigenvalues are smaller than those 

of KN network. Figure 4.27 (a) shows results of numerical calculation of the time 

evolution of the fraction of infected nodes from equation (4.31). The fraction of 

infected nodes on CPA network is larger than KN network at first, however, after time 

step =  2, KN network has more infected nodes in it. This result comes from the 

distribution of the eigenvalues and the tendency is confirmed by results of numerical 

simulations in Figure 4.27 (b). 

  



55 

 

 

(a) 𝑆𝑐𝑜𝑟𝑒 ≃ 10: 𝛽 = 0.030, 𝛿 = 0.1 

 

 

(b) 𝑆𝑐𝑜𝑟𝑒 ≃ 30: 𝛽 = 0.097, 𝛿 = 0.1 

 

Figure 4.25 The time evolution of the fraction of infected nodes: The score based on 

the maximum eigenvalue of a CPA network is set as 10 and 30 respectively. All 

networks have 500 nodes and 1000 links (〈𝑘〉 = 4). 
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Figure 4.26 The i th maximum eigenvalue of adjacency matrix of networks. All 

networks have 500 nodes and 1000 links (〈𝑘〉 = 4).  
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(a) Results of numerical calculation about the time dependence of the fraction of 

infected nods by using approximation formula (4.31): The infection rate 𝛽 = 0.0971 

and the curing rate 𝛿 = 0.1 are settled as same in Figure 4.25 (b) 𝑆𝑐𝑜𝑟𝑒 = 30. 

 

 

(b) The simulation results in Figure 4.25 (b) 𝑆𝑐𝑜𝑟𝑒 = 30 is rewritten on small scale to 

see the changing rate of infected nodes at early stage clearly. 

 

Figure 4.27 The comparison of the changing rate of infected nodes at early stage of the 

diffusion on CRA network and KN network to see the influence of the difference of the 

spectrum on eigenvalue of adjacency matrix.   
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Chapter 5  

Cascade Dynamics 

In Chapter 5, cascade dynamics on a threshold model is discussed, which is usually 

applied to study evolution of collective behaviors. Example includes diffusion of 

innovation and cascade failure such as chain bankruptcy. After introducing basic 

properties of cascade dynamics, optimal networks for maximizing cascade dynamics 

are formed by evolutionary optimization. The optimized networks have specific 

patterns of interconnection between nodes. Topological analysis of the optimal 

networks and numerical simulations on them show that the specific topological pattern 

controls the pathway of cascade dynamics to spread into the whole network via a 

cluster of vulnerable nodes. It is also demonstrated that optimal networks for 

minimizing cascade dynamics are optimal networks for maximizing probabilistic 

diffusion. 

 

5.1 A threshold model 

As mentioned in section 2.1, there are two types of cascade models, an overload model 

and a threshold model. Here, cascade dynamics on a threshold model is considered. 

A threshold model includes no probabilistic dynamics and the difference brings 

another type of diffusion properties, which is called robust but fragile. Let a given 

networked system have 𝑁 agents (nodes) and 𝐿 links and all agents have certain 

threshold 𝜙𝑖  (𝑖 = 1,2,3,⋯𝑁). All agents face a situation whether they will adopt a 

new innovation 𝑠𝑖 = 1 or keep the present manner 𝑠𝑖 = 0. Agents change their own 

state from and to the space 𝑆 = {0,1} based on the fraction of adjacent agents who 

adopt innovation at the previous time step. If the adoption rate of neighboring nodes is 

larger than the threshold 𝜙𝑖, the agent will become the adoption state 𝑠𝑖 = 1 at the 

next time step. The dynamics is summarized by equation (5.1). 
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 𝑠𝑖(𝑡 + 1) =

{
 
 

 
 1

∑ 𝑠𝑗(𝑡)𝑗∈𝑁𝑖

𝑑𝑖
≥ 𝜙𝑖  

0
∑ 𝑠𝑗(𝑡)𝑗∈𝑁𝑖

𝑑𝑖
< 𝜙𝑖  

. (5.1) 

where 𝑗 ∈ 𝑁𝑖 denotes a set of adjacent agents of agent 𝑖.  

Cascade dynamics by the model is progressive, where the direction of change in 

state is one way, for example, no agents turn back to be initial state after it changed. 

Initially, no agents adopt innovation 𝑠𝑖 = 0, ∀𝑖. The state of a few agents are forcely 

changed from 0 to 1 as a trigger of cascade dynamics and changes of the state of 

some neighboring agents is induced by them, which makes further changes of the state 

of other agents recursively. When a sequence of the change, or so-called “cascade”, is 

spread to the almost of all agents, such a result is called “global cascade”. This 

threshold model is usually used in the studies including diffusion of innovation, 

opinion formation and the spread of the specific state into the network. 

The dynamics by threshold model can be considered as coordination games on 

networks, in which agents play a 2 × 2 coordination game with each neighbor and 

revise the own state using a deterministic myopic-best response to maximize his 

current payoff that is decided by the fraction of neighbors choosing same state. In this 

framework, selecting 0 or 1 means, for example, adopting innovation or conservatism, 

selecting new product A or old product B, and accept or reject. The characteristic 

property of this cascade model is the decision rule based on the locality and the 

proportion of agents. Thanks to this simplicity, the model can be applied on many 

situations, in which each agent makes a binary decision. The payoff of each state for 

agents is summarized in symmetric matrix (Table 5.1). 

 

 

 

Table 5.1 A payoff matrix of a coordination game: agent 𝑖 and agent 𝑗 can select 0 

or 1 respectively, and the payoff depends on a combination of a selection by agent 𝑖 

and agent 𝑗. If agents select same one, they will get profit a or b. However, if agents 

select different ones, they will get no profit. The value at left side in each cell 

represents the profit of agent 𝑖 and the value at right side in each cell represents the 

profit of agent 𝑗. 

       j 

i 
1 0 

1 a, a 0, 0 

0 0, 0 b, b 
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Let 𝑈(𝑠𝑖, 𝑠𝑗∈𝑁𝑖)  be a total payoff after a 2 × 2  coordination game with 

neighboring agents as shown in equation (5.2), which is obtained using the summation 

of a payoff of each coordination game 𝑢(𝑠𝑖 , 𝑠𝑗). 

 𝑈(𝑠𝑖 , 𝑠𝑗∈𝑁𝑖) = ∑ 𝑢(𝑠𝑖, 𝑠𝑗)

𝑗∈𝑁𝑖

.  (5.2) 

The best response of each agent depends on the fraction of neighbors choosing 1. 

If the fraction 𝑟 is larger than the threshold 𝜙, then the best response of agent i is to 

choose 1, which means agent i adopts innovation. Otherwise agent i choose 0. The 

threshold value 𝜙 is decided by, for example, how attractive the innovation or opinion 

is for agents. The dynamics of a choosing state by agents is summarized by equation 

(5.3). 

 si = {
1 𝑟 > 𝜙 ,𝜙 = 𝑏/(𝑎 + 𝑏)
0 𝑟 < 𝜙                              

.  (5.3) 

5.2 Cascade window 

Watts [21] showed that there exists a condition of global cascade by using generating 

function, which is in terms of the threshold 𝜙 and the average degree (the average 

number of adjacent agents) 𝑧. Under the condition, global cascade could occur and the 

diffusion of innovation is achieved. They named this condition (area) as cascade 

window. 

The size of a cluster of vulnerable nodes which have small degrees and are 

affected easily by even a single adopting node, decides whether the cascade spreads to 

the entire network by a trigger. 

In order to obtain the condition for global cascade, a calculation of a cluster size 

of vulnerable nodes is done by generating function which is well-used approach to 

calculate a cluster size in the percolation theory. A generating function on the degree 

distribution 𝐺0(𝑥) is defined as, 

where 𝑃(𝑘) represents degree distribution of the network. 

The average degree (1
st
 moment) 〈𝑘〉 of the degree distribution 𝑃(𝑘) is given by 

𝐺0(𝑥) as shown in equation (5.5). 

The n-th moment is also given by equation (5.6). 

 𝐺0(𝑥) ≡ ∑𝑃(𝑘)𝑥𝑘
∞

𝑘=0

, (5.4) 

 〈𝑘〉 = ∑𝑘𝑃(𝑘)

∞

𝑘=0

= 𝐺′0(1). (5.5) 
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The probability distribution that a node has degree 𝑘, which is pointed from a 

randomly selected link, is 𝑘𝑃(𝑘)/〈𝑘〉. The generating function of this distribution is 

given by equation (5.7). 

The generating function of the probability distribution that a node has degree 𝑘 

except a following link, which is pointed from a randomly selected link, is given by 

equation (5.8). 

The probability distribution of it, which is the summation of the degree of 𝑚 

nodes that are randomly selected from a network, is given by 𝐺0(𝑥)
𝑚. In the case 

𝑚 = 2, for example, 𝐺0(𝑥)
2 is given as, 

where each coefficient of variable 𝑥𝑘 implies the probability of the summation of the 

degree of two node is 𝑘. 

𝐻1(𝑥) the generating function of the distribution of the size of the vulnerable 

cluster is defined as shown in equation (5.10) by using the recursiveness of the 

topology (Figure 5.1) and the property of the generating function (equation (5.9)). 

where coefficient 𝑞𝑘 represents the degree distribution of a node except a following 

link, which is connected to randomly selected link. 

 〈𝑘𝑛〉 = ∑𝑘𝑛𝑃(𝑘)

∞

𝑘=0

= (𝑥
𝑑

𝑑𝑥
)
𝑛

𝐺0(1)|
𝑥=1

. (5.6) 

 

∑ 𝑘𝑃(𝑘)𝑥𝑘∞
𝑘=0

〈𝑘〉

=
0𝑃(𝑘)𝑥0 + 1𝑃(1)𝑥1 + 2𝑃(2)𝑥2 + 3𝑃(3)𝑥3 +⋯

〈𝑘〉

=
𝑥𝐺′0(𝑥)

〈𝑘〉
. 

(5.7) 

 

𝐺1(𝑥) ≡
𝑃(1)𝑥0 + 2𝑃(2)𝑥1 + 3𝑃(3)𝑥2 +⋯

〈𝑘〉

=
𝐺′0(𝑥)

〈𝑘〉
. 

(5.8) 

 

G0(𝑥)
2 = [∑𝑃(𝑘)𝑥𝑘

∞

𝑘=0

]

2

= 𝑃(0)𝑃(0)𝑥0 + (𝑃(0)𝑃(1)+𝑃(1)𝑃(0))𝑥1

+ (𝑃(0)𝑃(2) + 𝑃(1)𝑃(1) + 𝑃(2)(0))𝑥2 +⋯, 

(5.9) 

 

𝐻1(𝑥) ≡ 𝑓(𝐻1(𝑥))

=  𝑥𝑞0 + 𝑥𝑞1𝐻1(𝑥) + 𝑥𝑞2[𝐻1(𝑥)]
2 + 𝑥𝑞3[𝐻1(𝑥)]

3
+⋯

= 𝑥𝐺1(𝐻1(𝑥)), 

(5.10) 
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Figure 5.1 The recursiveness of network. The network topology can be explained the 

combination of itself.  

The generating function 𝐻1(𝑥) can be rewritten from a viewpoint of nodes as, 

The average cluster size 〈𝑛〉 including a randomly selected node is given as, 

where 𝐻1
′(1) is 

Then, equation (5.12) can be rewritten as, 

The degree distribution of vulnerable node is given by 

where 𝜉𝑘 = ⌊1/𝜙⌋ and ⌊𝑥⌋ denotes a floor function ex. ⌊5.2⌋ = 5. 

The average size of a vulnerable cluster is given as,  

where 𝐺𝑣 (𝑥) = ∑𝜉𝑘𝑃(𝑘)𝑥
𝑘. 

The equation (5.16) will diverge when 〈𝑘〉 = 𝐺𝑣
′′(1). It implies a cluster size of 

vulnerable nodes is sufficiently large for a cascade dynamics to spread into the whole 

network via the cluster of vulnerable nodes. Then the condition of global cascade is 

given as, 

 𝐻0(𝑥) ≡ 𝑥𝐺0(𝐻1(𝑥)). (5.11) 

 

〈𝑛〉 = 𝐻0
′(1)

= 𝐺0(𝐻1(1)) + 𝐺0
′(𝐻1(1))𝐻1

′(1)

= 1 + 𝐺0
′(1)𝐻1

′(1), 

(5.12) 

 

𝐻1
′(1) = 𝐺1(𝐻1(1)) + 𝐺1

′(𝐻1(1))𝐻1
′(1)

= 1 + 𝐺1
′(1)𝐻1

′(1)

=
1

1 − 𝐺1
′(1)

. 

(5.13) 

 

〈𝑛〉 = 1 +
𝐺0
′(1)

1 − 𝐺1
′(1)

= 1 +
〈𝑘〉𝐺0

′(1)

〈𝑘〉 − 𝐺0
′′(1)

. 

(5.14) 

 𝑃𝑣(𝑘) = 𝜉𝑘𝑃(𝑘), (5.15) 

 〈𝑛𝑣〉 = 1 +
〈𝑘〉𝐺𝑣

′(1)

〈𝑘〉 − 𝐺𝑣′′(1)
, (5.16) 

 ∑ 𝑘(𝑘 − 1)𝑃(𝑘)

⌊1/𝜙⌋

𝑘=0

= 𝑧, (5.17) 
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where the constant 𝑧 represents the average degree 〈𝑘〉. 

Figure 5.2 shows the example of the theoretical cascade window of different 

network topologies from the cascade condition by Watts [21] (equation (5.17)). Inside 

the cascade window, an initial trigger node can make global cascade, but outside the 

cascade window the trigger has little influence and it cannot make global cascade. 

It is clear that even if networks have same average degree 𝑧, they have different 

size of cascade window due to the difference on their degree distribution. This implies 

that the size of the cascade window is influenced by underlying network topology. 

Young modeled the diffusion of innovation using a threshold model and studied 

the cascade condition on the lattice network [12, 13, 105] and Watts showed the 

importance of agents having small degree to maximize cascade window [106]. From 

their results, it is important that there is a large cluster which consists of agents with a 

small number of links. López used a mean-field approximation for modeling cascade 

phenomena on a threshold model and said that a network with intermediate variance in 

degree distribution maximizes the size of cascade window because the limitation make 

a network have a cluster of vulnerable nodes as Young and Watts introduced. López 

showed the relationship between the topology and the size of cascade window which is 

that an exponential network has wider cascade window compared to a scale free 

network [107] that is most susceptible to probabilistic diffusion [77]. Figure 5.2 

compares theoretical cascade windows. It is shown that the exponential network 

actually has larger cascade window compared to scale free network by KN model. 

However, a scale-free network by Barabási-Albert model has a wider cascade window 

than it of an exponential network (Figure 5.2). This implies that the conclusion by 

López about cascade window is partially true, which is that a network with 

intermediate deviation in its degree distribution, has the largest cascade window. 

From Figure 5.2, the inequality on the size of the cascade window is obtained as, 

 𝜙KN < 𝜙RND < 𝜙EXP < 𝜙SF(BA).  (5.18) 

This result brings another fundamental questions such as “Is the scale free 

network by Barabási-Albert model the best network to maximize the cascade 

window?”, “Contrary to maximization of the cascade window, what kind of network is 

optimal to prevent cascade dynamics?” and “How do we design networks which meet 

our requirements on the size of cascade window?”. Answering these questions is the 

first step to understand relationship between cascade phenomena and network 

topologies. In this dissertation, the optimal networks are studied, which maximize the 

cascade window for good cascade and minimize the cascade window for bad cascade. 
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Figure 5.2 The cascade window as a function of the threshold value 𝜙 of agents and 

the average degree z of networks: scale free network by KN model (KN), random 

network (RND), exponential network (EXP), and scale free network by BA model 

(SF(BA)). 

In cascade dynamics, the accumulation of adopting nodes has completely different 

effects compared to probabilistic diffusion. The changing probability on a state of a 

node is a nonlinear function under cascade dynamics on a threshold model; if the 

fraction of neighboring-adopting agents is under a threshold value of a node, nothing 

will happen, and if the fraction is over a threshold of a node, it is inevitable that a node 

𝑖 will adopt. This local dynamics decides the role of a hub node on cascade dynamics. 

In order to change the state of a hub node, large fraction of neighboring nodes should 

have adopted it, and then a hub node works as obstacles for a good cascade or firewall 

for a bad cascade (Case 1 in Figure 5.3). Of course, a hub node can transfer the 

influence to many neighboring nodes simultaneously (Case 2 in Figure 5.3). However, 

it rarely occurs due to small fraction of hub nodes, and it also has limited effect when 

the average degree of a network is not small because neighbors of a hub node are not 

usually vulnerable nodes under the condition. 

The cluster of vulnerable nodes which will adopt it even if only one of 

neighboring node has adopted it, have important role to get past a firewall (a hub node) 

(Case 3 in Figure 5.3). If the cascade dynamics begin from a vulnerable node, the 

sequence of adaptations can continue in a cluster of vulnerable nodes. When the 

substantial fraction of vulnerable nodes has adopted it, a center hub node will adopt it. 

A vulnerable node cannot make a hub node adopt directly, but the accumulation of 

adaptations of vulnerable nodes can do it. After that, the hub node will affect the rest of
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Figure 5.3 The effects of network topology on cascade dynamics. 

neighboring un-adopted nodes efficiently. In this respect, the cluster of vulnerable 

nodes works as a catalyst of cascade dynamics and a hub node works as both a firewall 

and an accelerator. 

Cascade dynamics on a threshold model has different phase transition compared 

to probabilistic diffusion. Figure 5.4 shows an example of the phase transition on scale 

free network by Barabási-Albert model. At around 𝜙 = 0.3, the cascade does not 

spread globally, and the average size of cascade is the same to a trigger node. Along 

with the decrease of the threshold value, the average size of cascade will increase, but 

the information from the average size does not show what actually happen on the 

network. For example, the average cascade size is still very small (= 0.7%) at the 

threshold 𝜙 = 0.22, but the global cascade is observed at least two times as results of 

1000 iterative numerical simulations. In probabilistic diffusion, the fraction of infected 

nodes at a steady state is increased continuously from a tipping point, but under 

cascade dynamics the prevalence to the whole network may occur at a tipping point 

and it will not happen always. This property of cascade dynamics is called “robust but 

fragile” and it makes difficult to predict the results of cascade dynamics. 

 

 



66 

 

 

Figure 5.4 The fraction of global cascade and the average size of cascade is plotted as a 

function of a threshold value of each node 𝜙, which is changed from 0.3 to 0, as the 

results of cascade dynamics on a scale free network by BA model with 500 nodes and 

2000 links. The tipping point, which defines the cascade window, is 0.22, where two 

global cascades are firstly observed in over 1000 iterative simulations. 

5.3 Evolutionary optimization for maximizing cascade window 

In this section, an optimal network for maximizing cascade window is designed by 

evolutionary optimization. The formula to obtain cascade window 𝜙∗ have already 

been introduced (equation (5.17)), but it is difficult to use it as objective function in 

evolutionary optimization. The variable 𝑘 in the left side of equation (5.17) is discrete 

number (𝑘 =  0, 1, 2, . .. ), and then the 𝑘, which makes the left side of the equation 

equal to the right side average degree 𝑧, cannot be found by numerical computation. 

On the other hand, there is alternative method that has only inequality in the formula. 

(1) Defining the objective function 

Cascade window size 𝜙∗ can be estimated analytically, where global cascade can 

occur, by the mean-field analysis of cascade phenomena [107]. 

All nodes face a problem of selection whether to adopt innovation or not. The 

probability 𝜃(𝑡) that a node adopts innovation, which is selected by following a 

randomly selected link, is given as, 



67 

 

 𝜃(𝑡) =∑
𝑘𝑃(𝑘)

〈𝑘〉
𝑘

 𝜌𝑘(𝑡), (5.19) 

where 𝜌𝑘(𝑡) is the fraction of nodes having degree 𝑘, which adopt innovation at time 

=  𝑡. 

Then, the probability that a node having degree 𝑘 has 𝑘1 adjacent nodes who 

have adopted it is given as, 

 𝑘𝐶𝑘1𝜃
𝑘1(1 − 𝜃)𝑘−𝑘1 . (5.20) 

The changing rate of 𝜌𝑘(𝑡) is given by 

 

𝑑𝜌𝑘(𝑡)

𝑑𝑡

= (1 − 𝜌𝑘(𝑡)) ∑ 𝑃(𝑠 = 𝑎𝑑𝑜𝑝𝑡, 𝑘1, 𝑘)𝐶𝑘1𝜃
𝑘1(1 − 𝜃)𝑘−𝑘1

𝑘

𝑘1=0

− 𝜌𝑘(𝑡) ∑ 𝑃(𝑠 = 𝑟𝑒𝑗𝑒𝑐𝑡, 𝑘1, 𝑘)𝐶𝑘1𝜃
𝑘1(1 − 𝜃)𝑘−𝑘1

𝑘

𝑘1=0

, 

(5.21) 

where 𝑃(𝑠 = 𝑎𝑑𝑜𝑝𝑡, 𝑘1, 𝑘) and 𝑃(𝑠 = 𝑟𝑒𝑗𝑒𝑐𝑡, 𝑘1, 𝑘) represents the probability that a 

node will select adopt or reject respectively when a node having degree 𝑘 has 𝑘1 

adjacent nodes who have adopted it, which is given by equation (5.1). 

The 𝜌𝑘(𝑡) at equilibrium state 𝑑𝜌𝑘(𝑡)/𝑑𝑡 = 0 is given as, 

 𝜌𝑘(𝑡) = ∑ 𝑃(𝑠 = 𝑎𝑑𝑜𝑝𝑡, 𝑘1, 𝑘)𝐶𝑘1𝜃
𝑘1(1 − 𝜃)𝑘−𝑘1

𝑘

𝑘1=0

. (5.22) 

Then, the recurrence formula of 𝜃(𝑡) is given as shown in equation (5.23) by 

using equation (5.19) and equation (5.22). 

 𝐻(𝜃) ≡ 𝜃(𝑡) =∑
𝑘𝑃(𝑘)

〈𝑘〉
𝑘

∑ 𝑃(𝑠 = 𝑎𝑑𝑜𝑝𝑡, 𝑘1, 𝑘)𝐶𝑘1𝜃
𝑘1(1 − 𝜃)𝑘−𝑘1

𝑘

𝑘1=0

. (5.23) 

At the beginning of the spread of cascade dynamics, 𝜃(𝑡) ≈ 0, and the condition 

𝑑𝐻(𝜃)/𝑑𝑡|θ≈0  > 1 is essential for the cascade to expand. 

Therefore, the condition of the global cascade is formulated as, 

 𝜙∗ = arg min
𝜙∈[0,1]

1

〈𝑘〉
∑ 𝑘2𝑃(𝑘)

⌊1/𝜙⌋

𝑘≥1

,      s. t  
1

〈𝑘〉
∑ 𝑘2𝑃(𝑘)

⌊1/𝜙⌋

𝑘≥1

> 1 . (5.24) 

When the function 𝐻(𝜃) is convex upward, the global cascade will occur by a 

few trigger nodes (Figure 5.5). 

In order to maximize the cascade window 𝜙∗ for good cascade, it is needed to 

find the network having the largest 𝜙∗ and then equation (5.24) is used as an objective 

function for evolutionary optimization proposed in Chapter 3.  
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Figure 5.5 The diagram of changes of the probability 𝜃 on a random network: average 

degree is 〈𝑘〉 = 4, the threshold of nodes is 𝜙 = 0.25. 

(2) Cascade window of evolutionary optimized networks 

Table 5.2 shows the summary of settings of evolutionary network optimization by GA 

for maximizing cascade window 𝜙∗ . The accumulation of the improvement by 

optimization cycle outputs a network having large fitness value along with the increase 

of the evaluation number (Figure 5.6). The optimization results are shown in Figure 5.7 

(circle), in which the average degree of networks is changed from 4 to 30. As above 

mentioned, the scale free network by BA model seems to be most suitable to maximize 

cascade window, but evolutionary optimization can find networks that have the widest 

cascade window, which is labeled as GA in Figure 5.7. 

 

 

 

Table 5.2 Parameters for genetic algorithm 

Genetic algorithm model Minimum Generation Gap model [104] 

Network size (number of nodes) 500 

Initial population size 20 

“Child” population size 20 

Objective function  Equation (5.24) 

Crossover  Uniform crossover 

Mutation Not used 

Selection  An elite selection strategy 

The number of evaluations Over 20000 
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               (a) 〈𝑘〉 = 10                       (b) 〈𝑘〉 = 20 

Figure 5.6 The fitness value of a network as a function of the evaluation number: 

○:The largest fitness value of the population, □:The average fitness value of the 

population. 

 

 

 

Figure 5.7 The theoretical cascade windows from Lopez formula (equation (5.24)) is 

plotted as a function of the threshold value of agents 𝜙 and average degree of a 

network 𝑧 , which are based on their degree distributions of networks: SF(BA) 

(Scale-free network by Barabási-Albert model) and GA (Evolutionary optimized 

network). 
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5.4 Heuristic models for optimizing cascade dynamics 

This section proposes heuristic models for maximizing or minimizing cascade 

dynamics. The heuristic models can form large-scale networks, and networks by the 

models can have an arbitrary average degree. The theoretical comparison on cascade 

window size between heuristic model networks and evolutionary optimized networks 

shows that the heuristic models are more optimal to maximize or minimize cascade 

dynamics. 

5.4.1 P model for maximizing cascade 

In this subsection, the probabilistic growing network model ”P model” for maximizing 

cascade dynamics is proposed, which is based on the network properties of 

evolutionary optimized networks. The evolutionary optimization is powerful method to 

create required networks, but the time complexity is relatively big. For example, when 

we create a large-scale network, the method requires a lot of computation time to 

propose a solution. Meanwhile, a heuristic model (network model), in general, has 

relatively small time complexity compared to the evolutionary optimization method. 

Furthermore, a heuristic model is useful to clarify and confirm what necessary structure 

for maximizing cascade of innovation is. 

P model replicates the topological properties of evolutionary optimized networks 

to maximize cascade dynamics. In next section, it will be shown that the optimized 

network has a cluster of hub nodes and a cluster of vulnerable nodes. A fundamental 

idea under the P model is creating each cluster by growing network mechanism. The 

typical example of growing network is BA model, of which degree distribution obeys 

power law. In BA model, at each time, a newly introduced node is connected to 

existing m nodes by preferential attachment, and it has a few hub nodes and many 

vulnerable nodes.  

In P model, at each time, one new node and c new links are introduced to a currnet 

network, and they are connected to hub nodes or vulnerable nodes, which depends on 

controlling parameter probability 𝑝. With probability 1 − 𝑝, a new node is connected 

to m hub nodes and new 𝑐 links are used to interconnect hub nodes. With probability 

𝑝 , new node is connected to m vulnerable nodes and new c links are used to 

interconnect vulnerable nodes. Therefore, if 𝑝 is close to 0, almost all nodes and links 

are connected to hub nodes. On the other hand, if 𝑝 is close to 1, they are basically 

connected to vulnerable nodes. By changing the probability 𝑝 from 0 to 1, we can 

control the size of cluster of hub nodes and cluster of vulnerable nodes to find the best 

network for maximizing cascade window. The good side effect of the growing network 

model is that a created network should be a single connected network, and we do not 

need to consider disconnection of nodes. The more detail of P model is explained in the 

following paragraphs.  

In the P model, a small connected network with a few nodes is prepared initially. 

At each time step, the creation of a cluster of either vulnerable nodes or hub nodes is 
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selected stochastically with probability p. If the creation of a cluster of hub nodes is 

selected, a newly introduced node is connected to m hub nodes in a current network, 

and new c links are used to connect hub nodes. The probability, which is that existing 

nodes will have a new neighboring node or new links, is defined by equation (5.25). 

Then a node having many links has higher probability to be selected. 

 𝑝(𝑑𝑖) =
(𝑑𝑖)

𝛽

∑(𝑑𝑖)𝛽
 . (5.25) 

If the creation of the cluster of vulnerable nodes is selected, a newly introduced 

node is connected to m vulnerable nodes in a current network, and c links are used to 

connect vulnerable nodes. The probability, which is that existing nodes will have a new 

neighboring node or new links, is given by the function of their degree defined by 

equation (5.26). Then, a node having few links has higher probability to be selected. 

 𝑝(𝑑𝑖) =
(1 𝑑𝑖
⁄ )

𝛽

∑(1 𝑑𝑖
⁄ )

𝛽
 .  (5.26) 

The variable m and c define average degree z of a formed network (z ≃ 2(c + m)), 

and the exponent 𝛽 in equation (5.25) and equation (5.26) changes what kind of nodes 

are selected. Note that 𝛽 has effective range on its value. If 𝛽 is too large, same pair 

of nodes are selected at each iteration, but multi links between same pair of nodes is 

not permitted. If 𝛽 is too small, each selection of nodes based on equation (5.25) and 

on equation (5.26) equal to random selection. As a result, the network cannot grow or 

make a cluster of nodes with sufficient size. In following simulations, 𝛽 = 2 is set, 

which is decided from results of the preliminary experiments (𝛽 = 1, 2, 3). In addition, 

𝑚 = 2 is set, which is effective to form a cluster of vulnerable nodes efficiently. Of 

course we can set 𝑚 = 1, but it makes a created network have a chance to have nodes 

with a single link. These nodes do not contribute to maximizing cascade dynamics, 

because these nodes do not transmit a state of an adjacent node to another node. How 

to make a network by P model is summarized as follows and in Figure 5.8. 

Step 1 Prepare a small connected network having a few nodes. 

Step 2 Go to step 3 with probability 1 − 𝑝 or go to step 4 with probability 𝑝. 

Step 3 Add a new node with m links and new c links to hub nodes with probability 

defined by equation (5.25). After that, go to step 5. 

Step 4 Add a new node with m links and new c links to vulnerable nodes with 

probability defined by equation (5.26). After that, go to step 5. 

Step 5 Go to Step 2 if a stop criterion, which is usually defined by the number of nodes, 

is not met. 

Figure 5.9 shows the theoretical cascade window size 𝜙 of P model network 

from equation (5.24) as a function of a parameter 𝑝. The network by P model has 500 

nodes, and settings of parameters are 𝛽 = 2,𝑚 = 2. It is shown that the size of 
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cascade window 𝜙 depends on a parameter 𝑝 and a network with the largest cascade 

window can be obtained by controlling 𝑝. If a controlling parameter is set as 𝑝 = 0, P 

model forms only a cluster of hub nodes and has narrow cascade window. If 𝑝 = 1, P 

model forms only a cluster of vulnerable nodes and has cascade window that is almost 

same size with random network. The cascade window of P model is maximized at 

intermediate 𝑝 (= 0.1~0.3). Figure 5.10 shows the theoretical cascade window of P 

model networks with best parameter 𝑝 at each average degree 𝑧 from equation (5.24). 

It is shown that the P model networks have same or larger size of cascade window 

compared to evolutionary optimized network (GA network).  

5.4.2 CPA and CRA model for minimizing cascade 

In general it is natural that equation (5.24) is used as objective function of evolutionary 

optimization to minimize cascade window. However, the evolutionary optimization 

requires a lot of computation time to propose a solution. Then, it is efficient to use 

another method when there is alternative method. 

From the definition of a threshold model (equation (5.3)), hub nodes (nodes with 

many links) and a cluster of them prevent the cascade. A hub node is stable toward the 

change of state of neighboring nodes, because a hub node still has many other 

un-changed nodes. When a network has a cluster of hub nodes, hub nodes have stable 

hub nodes as adjacent nodes and cascade is hard to occur. 

The study of probabilistic diffusion in Chapter 4 showed that the maximum 

eigenvalue of the adjacency matrix of a network is an index which shows how hub 

nodes are interconnected in a network. 

Then, a network with large maximum eigenvalue of the adjacency matrix (ex. 

partial complete graph and KN networks in Chapter 4) will be effective to minimize the 

spread of cascade dynamics. This intuitive idea is studied in this subsection. 

Figure 5.11 compares the theoretical cascade window between partial complete 

graph (CPA, CRA), KN network and random network, which is based on degree 

distribution of them. The figure shows that networks by the heuristic models (CPA, 

CRA, KN), which have large cluster of hub nodes, have narrow cascade window. 

Especially, the partially complete graph (CPA, CRA) has very narrow cascade window, 

and it denotes the cascade phenomena hardly spreads on those networks.  

The results in this chapter aiming to find network topologies that maximize or 

minimize the cascade window are summarized by the same manner of López [107] as 

𝜙CPA
∗ = 𝜙CRA

∗ < 𝜙KN
∗ < 𝜙RND

∗ < 𝜙EXP
∗ < 𝜙SF(BA)

∗ < 𝜙GA
∗ < 𝜙P model 

∗ . (5.27) 

where 𝜙P model 
∗  denotes the cascade window of the network by P model. Note that 

KN network can be considered as a network by the proposed P model with controlling 

parameters as 𝛽 = 1,𝑚 = 1, 𝑝=0.  
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Figure 5.8 The diagram of the procedure of P model. 𝑝 represents the probability to 

use newly introduced node and links for making a cluster of hub nodes. The encircled 

character V and H represent vulnerable node and hub node in the network respectively. 

 

Figure 5.9 The theoretical cascade window 𝜙 is plotted as a function of controlling 

parameter 𝑝 of P model. Each line corresponds to results of each network with 

average degree 〈𝑘〉 and 500 nodes. Note that parameters of P model are 𝛽 = 2 used 

in equation (5.25) and equation (5.26) and 𝑚 = 2 that is number of nodes connected 

to a newly introduced node.  
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Figure 5.10 The theoretical cascade window of P model network model with best 

parameter 𝑝 by Lopez formula equation (5.24) is plotted as a function of the threshold 

value 𝜙 of agents and the average degree 𝑧 of networks, which are compared to the 

results of evolutionary optimized network (GA) and Scale-free network by 

Barabási-Albert model (SF(BA)). 

 

Figure 5.11 The theoretical cascade windows by Lopez formula (equation (5.24)) that 

is based on the degree distribution of networks is plotted as a function of 𝜙 the 

threshold value of agents and 𝑧 average degree of network: CPA (Complete graph 

with Preferential Attachment in Chapter 4), CRA (Complete graph with Random 

Attachment in Chapter 3), KN (KN network in Chapter 4), and RND (Random 

network).  
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5.5 Analysis of optimized networks 

What kind of interaction among agents is formed by evolutionary optimized network 

topology to enhance cascade dynamics? Figure 5.12 shows evolutionary optimized 

network topology, but it is too complex to interpret the properties directly. Then, the 

topological properties of GA networks are revealed by using the degree distribution 

and the proposed maps denoting how nodes are interconnected. 

Figure 5.13 and Figure 5.14 show complementary cumulative density and 

cumulative density of the degree distribution of each network having average degree 

〈𝑘〉 = 10 and 〈𝑘〉 = 20 respectively. It is clear that optimal networks for maximizing 

cascade window by P model and GA networks have hub nodes, which usually works 

like a “brake” in cascade dynamics except the case the cascade begins from hub nodes, 

like networks by KN model and networks by CPA model, which have very small 

cascade window. The nodes with a few neighbors, which are usually called as leaf 

nodes or vulnerable nodes, are basically susceptible to the change of states of 

neighboring nodes. However, both of networks by KN model and networks by CPA 

model have a lot of vulnerable nodes like networks by P model for maximizing cascade 

window and GA networks. Then, only the amount of hub nodes and vulnerable nodes 

cannot define the size of cascade window. It imposes another new topological analysis 

on us to find out what elements make the spread of cascade dynamics easy or difficult. 

Therefore, the mapping method of the linkages between nodes in network is 

proposed (Figure 5.15). A point is plotted on (𝑑𝑖, 𝑑𝑗) when node 𝑖 having 𝑑𝑖 links 

and node 𝑗 having 𝑑𝑗 links are connected. Each point may have different diameter, 

which is proportional to the logarithm of the frequency of the cases. For the better 

understanding visually, the figure is converted to be symmetry. Figure 5.16 and Figure 

5.17 show how nodes are interconnected in networks, which have different average 

degree 〈𝑘〉 = 10 and 〈𝑘〉 = 20 respectively. For example, in the network by P model 

with the best 𝑝 that maximize 𝜙, there are a cluster of vulnerable nodes in the dashed 

circle and a cluster of hub nodes like as evolutionary optimized (GA) network (Figure 

5.16 (a)). The center of the cluster of vulnerable nodes is (5,5), which is most near 

from the origin of axes compared to other networks. The nodes in the cluster have 

small number of links and the cumulative fraction of those nodes is more than 60% 

(see at degree=10 in Figure 5.13 (b)). Cascade dynamics is driven via the vulnerable 

cluster, which are sensitive to the change of state of neighboring nodes, and the 

accumulation of the activated nodes in the cluster will change the state of the rest of 

nodes including hub nodes. Therefore, cascade dynamics can spread easily if a few 

nodes in a vulnerable cluster are activated. 

In a network by KN model, it is shown that there are hub nodes and they are 

densely interconnected. The network also has many vulnerable nodes, which are 

susceptible to cascade dynamics, but they are mainly connected to hub nodes and then 

they are isolated.  

In a network by CPA, it is clear that there are one big cluster of hub nodes (core) 
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and nodes connected to the core (peripheral nodes). The peripheral nodes have no 

direct connection each other and then cascade dynamics cannot spread via peripheral 

nodes.  

 Same maps on networks with different average degree 〈𝑘〉 = 20 are also plotted 

in Figure 5.17 and the results are same with Figure 5.16. 

 

 

 

 

 

 

 

 

 

 

Figure 5.12 Evolutionary optimized network: The network is output in the case the 

number of nodes is 500 and the average degree 𝑧 = 20.  



77 

 

 

(a) Complementary cumulative density 

 

(b) Cumulative density fraction 

Figure 5.13 The complement cumulative density and cumulative density in terms of 

degree of network by P model with the best 𝑝 that maximizes cascade window (P 

model (maximization)), the evolutionary optimized network (GA), KN network (KN) 

and CPA network (CPA). All networks have 500 nodes and same average degree 

〈𝑘〉 = 10.  



78 

 

 
(a) Complementary cumulative density 

 
(b) Cumulative density fraction 

Figure 5.14 The complement cumulative density and cumulative density in terms of 

degree of network by P model with the best 𝑝 that maximizes cascade window (P 

model (maximization)), the evolutionary optimized network (GA), KN network (KN) 

and CPA network (CPA). All networks have 500 nodes and same average degree 

〈𝑘〉 = 20.  
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Figure 5.15 The mapping of linkages between nodes in a network. 

 

(a) P model (maximization) 

 

(b) GA network 

 

(c) KN network 

 

(d) CPA 

Figure 5.16 This map shows the relationship of degrees between nodes, which are 

connected by links. The average degree of each network is 〈𝑘〉 = 10. The diameter of 

each point on the map is proportional to the logarithm of the frequency. 
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(a) P model (maximization) 

 

(b) GA network 

 

 

(c) KN network 

 

(d) CPA network 

Figure 5.17 This map shows the relationship of degrees between nodes, which are 

connected by links. The average degree of each network is 〈𝑘〉 = 20. The diameter of 

each point on the map is proportional to the logarithm of the frequency. 

 

  



81 

 

5.6 Simulation on optimized networks 

In this section, a set of simulation results is given. The simulations are conducted to 

confirm the influence of network topology to cascade dynamics (cascade phenomena) 

directly. The formula by Lopez (equation (5.24)) is useful mathematical tool to 

estimate cascade window. However, the formula cannot consider how nodes are 

interconnected and just use statistical information: the degree distribution of network. 

Then, it is needed to validate the results in former sections by simulations. 

Seven different networks are compared (CPA (Complete graph with preferential 

attachment), CRA (Complete graph with random attachment), KN (KN network), RND 

(Random network), EXP (Exponential network), SF(BA) (Scale free network by 

Balabási-Albert model ), GA (Evolutionary optimized network)), and all networks have 

500 nodes. The average degree is changed from 4 to 30. 

Initially, the state of all nodes (agents) is 0 and the state of only one node, which is 

selected randomly, is changed from 0 to 1 as a trigger of cascade dynamics. All agents 

update those states simultaneously depending on a threshold model (equation (5.1)). 

Same simulation is done over 1000 times and the average proportion of agents 

choosing 1 is observed. 

5.6.1 Analysis of cascade process 

The process of cascade phenomena from the beginning of it to a steady state is studied 

to check the idea that a vulnerable cluster is the gateway for the diffusion of cascade on 

networks. Figure 5.18 is a combination graph. Each triangle denotes the degree of a 

node that changes own state to adopt innovation at corresponding time. In the case the 

cascade process begins from a trigger that is a vulnerable node, cascade phenomena 

proceed via a vulnerable cluster until the cumulative fraction of adopting agents plotted 

by solid line with small circle exceeds certain critical mass. After that, hub nodes begin 

to adopt innovation and the cascade is spread to the whole network finally. The process 

of the cascade which begins from a hub node, is the same: the cascade phenomena 

proceed in a vulnerable cluster initially and cumulative fraction of adopting agents 

draw s-shaped curve, which implies there is a critical mass for global cascade. The 

difference of the starting position of cascade dynamics only affects the number of 

adopting nodes by a trigger at first step. Of course this difference could change the 

results drastically when the hub node has a lot of vulnerable nodes. 

It is also shown that it took relatively long time steps until hub nodes begin to 

adopt and all agents adopt innovation. This is because vulnerable nodes have a few 

links and the direct impact of the adoption by each vulnerable node is small. Then, it 

needs many steps for the cascade to spread to the entire network. This feature of the 

cascade phenomena implies why there is a long lag time between an innovation’s first 

appearance and the time when a substantial number of people have adopted it. 

From these results of numerical simulations and study of evolutionary optimized 

network topologies, it is clear that the coexistence of a cluster of hub nodes and a 
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cluster of vulnerable nodes drives cascade phenomena at wide conditions. When the 

total number of nodes and links is fixed respectively, the existence of a cluster of hub 

nodes decreases the average degree of nodes in a vulnerable cluster, which enhances 

the sensibility of the cluster toward cascade dynamics, and a large vulnerable cluster 

also essential to make hub nodes adopt innovation by adopting-agents besieging them.  
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(a) A trigger is a vulnerable node 

 

(b) A trigger is a hub node 

Figure 5.18 This figure shows the process of cascade dynamics on evolutionary 

optimized networks, which begins from a trigger node. The network has 500 nodes and 

the average degree is 〈𝑘〉 = 20. 
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5.6.2 Comparison of cascade window 

This subsection compares cascade window of networks. In Figure 5.19, the border line 

with points is plotted, on which global cascade is observed, at least one time out of 

1,000 trials. It is very clear that the GA network has the largest cascade window 

compared to other network topologies at wide condition in terms of average degree 𝑧 

and partial complete graph (CPA and CRA) has the narrowest cascade window. The 

results implies the network topology influence whether global cascade will occur even 

if network and each node has same average degree 𝑧 and threshold 𝜙 respectively. 

The results also reflect the trend of the theoretical cascade window as shown in Figure 

5.7 and Figure 5.11.  

It is interesting that KN network and SF(BA) network, of which degree 

distribution obey power law and have hub nodes, have opposite effects on the cascade 

window. SF(BA) network tends to expand the cascade window, but KN network 

narrow cascade window. It is intuitive and easy to understand the reason in the case of 

KN network, because almost all nodes are interconnected via the center hub cluster that 

is very stable toward the change of neighboring node’s state. In the case of SF(BA) 

network, however, it is needed to understand the effects of the cluster of vulnerable 

nodes, of which degree is less than average degree in the network. The cluster of 

vulnerable nodes is also the reason that GA network has the largest cascade window.  

The performance of P model networks is also validated by numerical simulations. 

Figure 5.20 shows the size of cascade window of P model network is same or larger 

compared to it of GA network. These results support the intuitive idea that the cluster 

of vulnerable nodes could enhance cascade under even severe condition, where each 

node has high threshold and the average degree of network is high. 

The cascade windows of networks are also considered from eigenvalue view point 

in Figure 5.21. The ratio 〈𝑘〉/λmax(𝐀) is defined by equation (4.45) to understand 

how a cluster of hub nodes affects tipping point on probabilistic diffusion. The figure 

shows the cascade window expands with the increase of the ratio and become largest at 

the intermediate size of the ratio. After that it decreases again. This result corresponds 

to the change of cascade widow of P model with parameter 𝑝 shown in Figure 5.9. In 

P model, the cascade window is maximized at intermediate 𝑝, and its topological 

meaning is finding the optimal size of a cluster of hub nods to maximize cascade 

window. 
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Figure 5.19 The cascade window on networks from numerical simulations is plotted as 

a function of the threshold value 𝜙 of agents and average degree 𝑧 of network. 

 

 

Figure 5.20 The cascade window of P model network from numerical simulations is 

plotted as a function of the threshold value 𝜙 of agents and the average degree 𝑧 of 

networks, which is compared to the results of evolutionary optimized network and 

exponential network. 
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Figure 5.21 The cascade window 𝜙∗ of networks from simulation results is plotted as 

a function of the ratio of average degree to maximum eigenvalue 〈𝑘〉/λmax(A). 
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5.6.3 Comparison of the frequency of global cascade 

The cascade window shown in previous subsection indicates the area where the global 

cascade can occur in terms of the relationship between threshold value of nodes and 

average degree of a network. However, it lacks a point of view about the frequency or 

how often the global cascade will occur inside the cascade window. 

Figure 5.22 shows the density (or ratio) of global cascade on networks by P model, 

in which all agents finally accept. The cascade will spread to a whole network when 

average degree 〈𝑘〉 and threshold 𝜙 is inside the cascade window. However, near the 

border of the cascade window, global cascade does not usually occur. The density is 

about from 0.001 to 0.01 as results of 1000 numerical simulations. Furthermore, near 

the border of cascade window, the size of each cascade is usually small except global 

cascade.  

The tendencies that the frequency of global cascade will decrease near the border 

of the cascade window are common properties of all simulated networks except 

homogeneous network where all nodes have same degree (Figure 5.22 - Figure 5.29). It 

implies that near the border of the cascade window, the sequence or the process of 

global cascade is limited to a few cases. Therefore, the network is scarcely affected 

when the initially activated node is not optimal one for global cascade.  

If concerned network has condition that is on the border of cascade window, the 

global cascade may not occur in many cases. When the global cascade represents bad 

phenomena (ex. diffusion of rumor or the sequence of bankrupt), it will not explained 

to pay for preventing or mitigating the loss of the global cascade by the usual thinking 

scheme of cost and benefit because the expected loss of it is not sufficiently large. This 

is not unusual case especially in the artificial systems. Those systems are usually 

designed to maximize the utility and minimize the cost for creation of systems 

including the cost for safety. As a result, we may have to accept the entire loss by 

global cascade in the worst case. 
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Figure 5.22 The density of global cascade on networks by P model with best parameter 

𝑝 to maximize cascade window, in which all nodes finally accept. The only one node 

is selected randomly as initially accepted node for each simulation. The network has 

500 nodes. The average degree 〈𝑘〉 is changed from 4 to 30 and the threshold 𝜙 is 

changed from 0.00 to 0.30. 

 

Figure 5.23 The density of global cascade on GA networks, in which all nodes finally 

accept. The only one node is selected randomly as initially accepted node for each 

simulation. The network has 500 nodes. The average degree 〈𝑘〉 is changed from 4 to 

30 and the threshold 𝜙 is changed from 0.00 to 0.30. 
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Figure 5.24 The density of global cascade on SF(BA) networks, in which all nodes 

finally accept. The only one node is selected randomly as initially accepted node for 

each simulation. The network has 500 nodes. The average degree 〈𝑘〉 is changed from 

4 to 30 and the threshold 𝜙 is changed from 0.00 to 0.30. 

 

Figure 5.25 The density of global cascade on EXP networks, in which all nodes finally 

accept. The only one node is selected randomly as initially accepted node for each 

simulation. The network has 500 nodes. The average degree 〈𝑘〉 is changed from 4 to 

30 and the threshold 𝜙 is changed from 0.00 to 0.30. 
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Figure 5.26 The density of global cascade on random networks, in which all nodes 

finally accept. The only one node is selected randomly as initially accepted node for 

each simulation. The network has 500 nodes. The average degree 〈𝑘〉 is changed from 

4 to 30 and the threshold 𝜙 is changed from 0.00 to 0.30. 

 

 

Figure 5.27 The density of global cascade on homogeneous networks, in which all 

nodes finally accept. The only one node is selected randomly as initially accepted node 

for each simulation. The network has 500 nodes. The average degree 〈𝑘〉 is changed 

from 4 to 30 and the threshold 𝜙 is changed from 0.00 to 0.30. 
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Figure 5.28 The density of global cascade on KN networks, in which all nodes finally 

accept. The only one node is selected randomly as initially accepted node for each 

simulation. The network has 500 nodes. The average degree 〈𝑘〉 is changed from 4 to 

30 and the threshold 𝜙 is changed from 0.00 to 0.30. 

 

 

Figure 5.29 The density of global cascade on CPA networks, in which all nodes finally 

accept. The only one node is selected randomly as initially accepted node for each 

simulation. The network has 500 nodes. The average degree 〈𝑘〉 is changed from 4 to 

30 and the threshold 𝜙 is changed from 0.00 to 0.30.  



92 

 

5.6.4 Comparison of the average cascade size 

The average number is usually a useful statistic index to understand the properties of 

concerned phenomena. Examples include the average death rate due to harmful effects 

of medicines, the average height of tsunami after terrible earthquake, and the mean 

time before failure of new products. This subsection studies the average cascade size 

on networks with the frequency of global cascade, which has been already considered 

in previous section. The results show that the global cascade can occur even the 

average cascade size is almost 0. This gap between the frequency of global cascade and 

the average size of cascade may lead underestimation of the probability of events 

driven by cascade dynamics. 

Figure 5.30-Figure 5.37 show the average cascade size 〈𝑠〉 from reiterative 

simulation over 1000 times. In each simulation, no nodes accept initially and one 

randomly selected node is forced to accept as a trigger of cascade dynamics. The 

average degree of the network and the threshold value of nodes are changed to observe 

their influence. 

The results of networks by P model with best parameter 𝑝 to maximize cascade 

window is shown in Figure 5.30. It is very interesting that the average cascade size is 

relatively small at small average degree 〈𝑘〉 even if the network has largest cascade 

window as shown in Figure 5.20. This result comes from the drastic decrease of 

number of global cascade as shown in Figure 5.22. A network by P model at small 

average degree has star like structure and then the global cascade only start from the 

hub node. The specific structure reduces the frequency of global cascade. As results, 

the average cascade size becomes very small even the network has largest cascade 

window. It is the typical case we may misunderstand the influence of events driven by 

cascade dynamics.  

Except networks by P model, there are roughly two common properties of average 

cascade size on networks. First one is that the average cascade size will jump from 

almost 0 to 1 nonlinearly when the threshold 𝜙 becomes smaller than the certain point 

at any average degree. Second is that the width of the threshold where the average 

cascade size is almost 1 becomes narrow along with the increase of the average degree. 

Both of them are not observed in probabilistic diffusion process. Especially, the latter 

property that a network with smaller average degree is more diffusive in threshold 

dynamics is interesting, which is a contrary result in probabilistic dynamics (equation 

(4.8)). 
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Figure 5.30 The average cascade size from reiterative simulation over 1000 times on 

networks by P model with best parameter 𝑝 to maximize cascade window. The only 

one node is selected randomly as initially accepted node for each simulation. The 

network has 500 nodes. The average degree 〈𝑘〉 is changed from 4 to 30 and the 

threshold 𝜙 is changed from 0.00 to 0.30. 

 

Figure 5.31 The average cascade size from reiterative simulation over 1000 times on 

GA networks. The only one node is selected randomly as initially accepted node for 

each simulation. The network has 500 nodes. The average degree 〈𝑘〉 is changed from 

4 to 30 and the threshold 𝜙 is changed from 0.00 to 0.30. 
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Figure 5.32 The average cascade size from reiterative simulation over 1000 times on 

SF(BA) networks. The only one node is selected randomly as initially accepted node 

for each simulation. The network has 500 nodes. The average degree 〈𝑘〉 is changed 

from 4 to 30 and the threshold 𝜙 is changed from 0.00 to 0.30. 

 

 

Figure 5.33 The average cascade size from reiterative simulation over 1000 times on 

EXP networks. The only one node is selected randomly as initially accepted node for 

each simulation. The network has 500 nodes. The average degree 〈𝑘〉 is changed from 

4 to 30 and the threshold 𝜙 is changed from 0.00 to 0.30. 
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Figure 5.34 The average cascade size from reiterative simulation over 1000 times on 

random networks. The only one node is selected randomly as initially accepted node 

for each simulation. The network has 500 nodes. The average degree 〈𝑘〉 is changed 

from 4 to 30 and the threshold 𝜙 is changed from 0.00 to 0.30. 

 

 

Figure 5.35 The average cascade size from reiterative simulation over 1000 times on 

homogeneous networks. The only one node is selected randomly as initially accepted 

node for each simulation. The network has 500 nodes. The average degree 〈𝑘〉 is 

changed from 4 to 30 and the threshold 𝜙 is changed from 0.00 to 0.30.  
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Figure 5.36 The average cascade size from reiterative simulation over 1000 times on 

KN networks. The only one node is selected randomly as initially accepted node for 

each simulation. The network has 500 nodes. The average degree 〈𝑘〉 is changed from 

4 to 30 and the threshold 𝜙 is changed from 0.00 to 0.30. 

 

Figure 5.37 The average cascade size from reiterative simulation over 1000 times on 

CPA networks. The only one node is selected randomly as initially accepted node for 

each simulation. The network has 500 nodes. The average degree 〈𝑘〉 is changed from 

4 to 30 and the threshold 𝜙 is changed from 0.00 to 0.30. 
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Chapter 6  

Consensus Dynamics 

This chapter shows optimal networks for fast consensus by evolutionary optimization. 

Consensus dynamics on optimized networks is faster than Ramanujan graphs that are 

classical networks for fast consensus. Especially, when networks are very sparse where 

the average degree is 2, the optimized networks form a very fast consensus compared 

to the Ramanujan graphs. Heuristic network model for fast consensus when network is 

sparse is proposed. Furthermore, the optimal network for slow consensus is also 

considered. 

6.1 A consensus model 

In the networked system, “consensus”, which is also called “synchronization”, means 

to accomplish coordination between elements in the system as results of their 

interactions [22, 62, 108, 109]. The concept of the consensus is applied in the 

coordination of multi-agent networks including synchronization of coupled oscillators, 

flocking behaviors, data fusion in large sensor networks, and rendezvous of moving 

agents. From the symmetry of mathematical expression, consensus dynamics can be 

seen as the dynamics of markov chain [110, 111]. The state of each node is represented 

by 𝑥𝑖(𝑡), and nodes interact with other nodes connected by links simultaneously. The 

interaction between adjacent agents is defined as, 

 �̇�𝑖(𝑡) =∑ 𝑎𝑖𝑗 (𝑥𝑗(𝑡) − 𝑥𝑖(𝑡))
𝑗∈𝑁𝑖

, (6.1) 

where �̇�𝑖(𝑡) represents the amount of change in the state of agent (node) 𝑖 at time 𝑡 

and 𝑁𝑖 represents the set of adjacent nodes of node 𝑖. Using the adjacency matrix 𝐀 

and the degree matrix 𝐃, of which the diagonal elements equals the degree of node 𝑖 

(𝐃𝑖𝑖 = 𝑑𝑖), this interaction can be formulated using matrix expressions as, 

 �̇�(𝑡) = −(𝐃− 𝐀)𝒙(𝑡), (6.2) 
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where 𝒙(𝑡) represents a column vector consisting of 𝑥𝑖(𝑡), (1 ≤ 𝑖 ≤ 𝑁), 𝑁 denotes 

the number of agents (nodes) in a network. 

This model is formed as a continuous function, and the solution can be obtained 

analytically as shown in equation (6.3). 

 𝒙(𝑡) = exp(−𝐋𝑡)𝒙(0), (6.3) 

where the matrix 𝐋 = 𝐃− 𝐀, which is called the Laplacian matrix. The equation (6.3) 

can be rewritten using the set of eigenvalues of the Laplacian matrix 𝐋 as shown in 

equation (6.4). 

 𝒙(𝑡) = 𝐳(

e−𝜆1(𝐋)t

e−𝜆2(𝐋)t

⋱
e−𝜆𝑁(𝐋)t

)𝐳T𝒙(0), (6.4) 

where 𝜆𝑖(𝐋) represents the i-th minimum eigenvalue of the Laplacian matrix 𝐋 and 

𝐳 is the set of corresponding eigenvector. 0 is one of eigenvalues of the matrix 𝐋 and 

the column vector 𝟏 = (1,1,⋯ ,1)T is corresponding eigenvector, because 𝐋𝟏 = 0 ∙ 𝟏. 

Then, the element (1,1) of exp (−𝐋𝑡) should be 1 at any time 𝑡 and other diagonal 

elements decrease exponentially. When the time 𝑡 becomes sufficiently large, the 

equation (6.4) converges to 

 

𝒙(∞) = 𝐳(

1
0

⋱
0

)𝐳T𝒙(0),

= (
1

𝑁
)𝟏𝟏T 𝒙(0). 

(6.5) 

Note that the corresponding eigenvector to eigenvalue 0 of the matrix 𝐋 is normalized 

as 1/√𝑁(1,1,⋯ ,1)T. Therefore, the size of the second minimum eigenvalue λ2(𝐋) 

decides the consensus speed and the network that has large λ2(𝐋) is optimal to 

achieve fast consensus. 

The consensus process in networked agents proceeds with the discrete time step 

and it can be modeled by the same manner of continuous consensus model above 

mentioned with introducing the coefficient of changing rate 𝜖 as shown in (6.6). 

 

𝒙(𝑡 + 1) = (𝐈 − 𝜖𝐋)𝒙(𝑡),

= 𝐖𝒙(𝑡),

= 𝐖t𝒙(0), 

(6.6) 

where the matrix 𝐖 is (𝐈 − 𝜖𝐋). The iteration will converge and make average 

consensus when the following equation (6.7) is true. 

 lim
𝑡→∞

𝐖t = (
1

𝑁
)𝟏𝟏T. (6.7) 

The necessary and sufficient condition of the equation (6.7) is obtained as 
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 𝜌(𝐖− (1/𝑁)𝟏𝟏T) < 1, (6.8) 

where the function 𝜌(𝐖− (1/𝑁)𝟏𝟏T)  represents the spectrum radius of the 

matrix 𝐖 − (1/𝑁)𝟏𝟏T and 𝜌(𝐖− (1/𝑁)𝟏𝟏T) is given as, 

 𝜌(𝐖− (1/𝑛)𝟏𝟏T) = max{1 − 𝜖λ2(𝐋), 𝜖λN(𝐋) − 1}. (6.9) 

For the fast consensus, the spectrum radius 𝜌  should be small, and it is 

minimized at 𝜖 = 𝜖∗, which is defined by equation (6.10) [74]. 

 𝜖∗ =
2

𝜆2(𝐋) + 𝜆𝑁(𝐋)
. (6.10) 

The 𝜌∗ at 𝜖 = 𝜖∗ is given, 

 

𝜌∗(𝜖∗) =
𝜆𝑁(𝐋) − 𝜆2(𝐋)

𝜆2(𝐋) + 𝜆𝑁(𝐋)
,

=
1 − 𝑅

1 + 𝑅
. 

(6.11) 

It is clear that the eigenvalue ratio 𝑅 = 𝜆2(𝐋)/𝜆𝑁(𝐋) defines the spectrum radius 

𝜌∗ and in the consensus with discrete time the network having large eigenvalue ratio 

𝑅 is optimal to form fast consensus. 

In this dissertation, the consensus with discrete time step, which is valid in 

networked systems by agents, is considered, and the network topology, which 

maximize or minimize the eigenvalue ratio 𝑅 , is studied by using evolutionary 

network optimization and the analysis of the distribution of eigenvalue of the Laplacian 

matrix. 

6.2 Laplacian spectrum of networks 

Define the network is formed by the adjacency matrix 𝐀, and the degree matrix 𝐃 

that is diagonal matrix having degree of nodes in diagonal elements. As mentioned at 

equation (6.3), the Laplacian matrix is defined as,  

 𝐋 = 𝐃− 𝐀 . (6.12) 

The eigenvalues of the Laplacian matrix includes important information about the 

network topology. One of well-known properties is that the number of 𝜆(𝐋) = 0 

represents the number of isolated networks. Then, if the network has no disconnected 

nodes, the network has 𝑁 − 1 eigenvalues including multiple ones where 𝑁 is the 

number of nodes in the network. The relationship between the eigenvalues of the 

Laplacian matrix and the index of network topology is also found as, 

 𝜆2(𝐋) ≤
𝑁

𝑁 − 1
𝑑𝑚𝑖𝑛 ≤

𝑁

𝑁 − 1
𝑑𝑚𝑎𝑥 ≤ 𝜆𝑁(𝐋) ≤ 2𝑑𝑚𝑎𝑥, (6.13) 
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where 𝜆𝑖 represents i-th minimum eigenvalue of the Laplacian matrix, and 𝑑𝑚𝑖𝑛 and 

𝑑𝑚𝑎𝑥 are minimum or maximum degree of nodes in the network. 

Then, the eigenvalue ratio 𝑅 = 𝜆2(𝐋)/𝜆𝑁(𝐋) , which is related to the fast 

consensus, can be bounded as, 

 
𝜆2(𝐋)

𝜆𝑁(𝐋)
≤

𝑁𝑑𝑚𝑖𝑛
(𝑁 − 1)2𝑑𝑚𝑎𝑥

≤
𝑑𝑚𝑖𝑛
𝑑𝑚𝑎𝑥

≤ 1, (6.14) 

and the relationship as shown in equation (6.15) is known. 

 
2𝑒(𝐺)(1 − cos (𝜋/𝑁) ≤ 𝜆2(𝐋), 

𝑑𝑚𝑎𝑥 + 1 ≤ 𝜆𝑁(𝐋), 
(6.15) 

where the function 𝑒(𝐺) is edge connectivity, which is defined as the minimal number 

of edges whose removal result in loosing connectivity of the network G. 

The lower bound of 𝜆2(𝐋) by equation (6.15) implies the edge connectivity 

affects the spectrum gap 𝜆2(𝐋), however, it is meaningless when the network is 

large-scale network. From the equation (6.14) and (6.15), the homogeneous network, 

such as regular network, seems to be optimal for the fast consensus, and the 

heterogeneous network, such as scale free network, seems to be optimal for slow 

consensus. Figure 6.1 shows the spectrum, which is set of eigenvalues of the Laplacian 

matrix of the networks. The circle lattice networks is one of 𝑘-regular networks, in 

which nodes are connected to 𝑘/2 left and right adjacent nodes that form circle type 

network as shown in Figure 6.2, is very homogeneous network, and the edge 

connectivity equals average degree (= 4). However, the 𝜆2(𝐋𝐜) of circle lattice is 

smaller than scale free networks 𝜆2(𝐋SF) that has nodes with 2 degree, and the 

eigenvalue ratio is 0.0008/6.25 = 0.000128, which is smaller than the eigenvalue 

ratio of scale free network 0.5736/63.1551 = 0.00908. On the other hand, the 

random regular network, which is also one of k-regular network and links are wired 

randomly, has large 𝜆2(𝐋RR) = 0.562 and relatively small 𝜆𝑁(𝐋RR) = 7.45. From 

only this example, it is clear that the estimation of performance of network for 

consensus dynamics from the degree distribution is difficult. 
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Figure 6.1 The spectrum, which is the set of eigenvalues of the Laplacian matrix, of 

networks with 500 nodes and 1000 links is plotted. 

 

 

 

 

 

Figure 6.2 A circle-lattice network with degree 𝑘 = 4. 
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It is needed to understand the properties of Laplacian spectra, which is the index 

of consensus dynamics as shown in previous section, to optimize network topology for 

consensus dynamics. Therefore, it begins with the overview of the Laplacian spectra of 

typical network topologies and the difficulties of the network optimization for 

consensus dynamics by global statistical data is shown, which are ordinary used to 

study complex network. 

Ramanujan graph is a k-random regular graph, and it is known that the classical 

network for fast consensus having the largest value of 𝜆2(𝐋) [75, 112, 113]: 

 𝜆2(𝐋) ≥ 𝑘 − 2√𝑘 − 1. (6.16) 

Figure 6.3 shows 𝜆2(𝐋) of several networks. It validates that the Ramanujan 

graphs have the largest 𝜆2(𝐋) compared to typical network topologies including 

random networks, scale-free networks, and KN networks. Under the continuous-time 

consensus model, of which the speed is defined by 𝜆2(𝐋) as shown in equation (6.5), 

the fastest consensus will achieve on the Ramanujan graphs. 

The discrete-time consensus is modeled by equation (6.6), such as a system 

consisting of networked agents, where the eigenvalue ratio 𝑅 = 𝜆2(𝐋)/𝜆𝑁(𝐋) defines 

the consensus speed. According to the study by Kar et al. the eigenvalue ratio is more 

sensitive to the variations in the second minimum eigenvalue 𝜆2(𝐋)  than the 

variations in the maximum eigenvalue 𝜆𝑁(𝐋) [109]. Figure 6.4 shows the eigenvalue 

ratio 𝑅 of networks. The Ramanujan graphs also have the largest value of R, and the 

Ramanujan graphs can drive the fastest consensus dynamics.  

The comparison of Figure 6.3 and Figure 6.4 shows that the consensus speed 

depends on whether the protocol is continuous time step or discrete time step: the scale 

free network is the second fastest network under continuous time consensus model, but 

the random network is the second under discrete time consensus model. It is also clear 

that the existence of a power law of the degree distribution does not directly imply the 

performance for consensus dynamics from the results of scale free networks SF(BA) 

and KN networks (KN): The consensus speed is different drastically between scale free 

networks and KN network, even they share similar property of the degree distribution 

that is power law. 

One of the reasons that the global statistical properties such as power law of the 

degree distribution cannot predict the second minimum eigenvalue 𝜆2(𝐋), which is the 

dominant index of consensus dynamics, is that it will be affected by the local 

topological properties of the network. According to [114], the upper bound of λ2(L) is 

given as 

 𝜆2(𝐋) ≤ 2
|𝐸(𝑆, 𝑆𝑐)|

|𝑆|
, (6.17) 

where |𝑆| is total number of nods in any subset of nodes 𝑆 satisfying 0 < |𝑆| ≤ 𝑁/2, 

and |𝐸(𝑆, 𝑆𝑐)| is the number of edges between 𝑆 in the complement of |𝑆|. Consider 

there are two sub graphs: a large Ramanujan graphs with 500 nodes and a small 

Ramanujan graphs with 100 nodes that are connected by only one link (Figure 6.5). 
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Although each graph is optimal for consensus dynamics: 𝜆2 (𝐋Left ) = 0.617 

𝜆2 (𝐋Right ) = 0.938, 𝜆2(𝐋) of the entire network is close to 0 (𝜆2(𝐋) = 0.00698) 

due to small |𝐸(𝑆, 𝑆𝑐)| that is 1 in this case. Therefore, the globally statistical 

properties of network is sometimes useless to estimate the performance of the network 

for consensus dynamics.  

 

Figure 6.3 The comparison of 𝜆2(𝐋) second minimum eigenvalue of the Laplacian 

matrix 𝐋 of several networks: Each network consists of 500 nodes. 

 

 

 

Figure 6.4 The comparison of 𝜆2(𝐋)/𝜆𝑛(𝐋) the eigenvalue ratio of the Laplacian 

matrix 𝐋 of several networks: Each network consists of 500 nodes. 
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Figure 6.5 The network consisting of two Ramanujan graphs connected by a link. The 

Ramanujan graph in left side has 500 nodes and 〈𝑘〉 = 4, and 𝜆2(𝐋Left) = 0.617. The 

Ramanujan graph in right side has 100 nodes and 〈𝑘〉 = 4, and 𝜆2(𝐋Right) = 0.938. 

The whole network has 𝜆2(𝐋) = 0.00698, which is smaller than 𝜆2(𝐋) of each 

network. 
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6.3 Evolutionary optimization for fast or slow consensus 

In this section, the evolutionary optimization is applied to design networks that 

maximize or minimize the consensus process using eigenvalue ratio 𝑅 = 𝜆2(𝐋)/𝜆𝑛(𝐋) 

as objective function.  

6.3.1 Fast consensus: minimizing convergence time for consensus 

The evolutionary optimization can create networks that has larger eigenvalue ratio 

𝑅 = 𝜆2(𝐋)/𝜆𝑁(𝐋) by up to 5 % than Ramanujan graphs, which is considered as most 

optimal networks for consensus dynamics in previous studies [75, 113] (Figure 6.6). 

Note that each Ramanujan graph used in this comparison is created to have the largest 

𝑅 by over 1000 iteration of the creation of Ramanujan graph. Figure 6.7, in which 

Figure 6.6 is plotted on semi-logarithmic scale, features the performance of optimized 

network when average degree 〈𝑘〉 = 2, which has very large R compared to the 

Ramanujan graphs (𝑅optimized/𝑅Ramanujan  = 17.8). 

Figure 6.8 and Figure 6.9 show 𝜆2(𝐋) and 𝜆𝑁(𝐋) of evolutionary optimized 

networks and Ramanujan graphs respectively. It is shown that the large 𝑅 of the 

optimized network with 〈𝑘〉 = 2  comes from very large 𝜆2(𝐋)  compared to 

Ramanujan graph. It is also shown that 𝜆𝑁(𝐋) of the optimized network is larger than 

that of Ramanujan graph when average degree is small, but it is relatively smaller than 

the ratio of 𝜆2(𝐋) between those networks. 

The degree distribution of evolutionary optimized networks is shown in Figure 

6.10. It is very clear that evolutionary optimized network is not k-regular graphs. This 

result combined with results from Figure 6.6 to Figure 6.8 implies the regular network 

is not necessary condition to achieve the fastest consensus including continuous time 

consensus and discrete time consensus, of which the consensus speed is defined by 

𝜆2(𝐋) and 𝜆2(𝐋)/𝜆𝑁(𝐋) respectively. 

Finally, the topology of optimized network with 〈𝑘〉 = 2 is visualized in Figure 

6.11. The network has a characteristic topology (ring-trees structure) having a 

ring-network at the center of the network and several modularized tree networks 

interconnected via the ring network. 
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Figure 6.6 The eigenvalue ratio 𝑅 = 𝜆2(𝐋)/𝜆𝑛(𝐋)  of Laplacian matrix 𝐋  of 

evolutionary optimized network (GA) and Ramanujan network (Ramanujan) is plotted 

as a function of the average degree. Each network has 500 nodes. 

 

 

 

Figure 6.7 The eigenvalue ratio 𝑅 = 𝜆2(𝐋)/𝜆𝑛(𝐋)  of Laplacian matrix 𝐋  of 

evolutionary optimized network (GA) and Ramanujan network (Ramanujan) is plotted 

as a function of the average degree on semi-logarithmic scale. Each network has 500 

nodes. 
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Figure 6.8 The second minimum eigenvalue 𝜆2(𝐋)  of Laplacian matrix 𝐋  of 

evolutionary optimized network (GA) and Ramanujan network (Ramanujan) is plotted 

as a function of the average degree. Each network has 500 nodes.  

 

 

Figure 6.9 The maximum eigenvalue 𝜆𝑁(𝐋) of Laplacian matrix 𝐋 of evolutionary 

optimized network (GA) and Ramanujan network (Ramanujan) is plotted as a function 

of the average degree. Each network has 500 nodes. 
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Figure 6.10 The degree distribution of evolutionary optimized networks for the 

maximization of consensus-dynamics. Every networks have 500 nodes and each legend 

represents the average degree 〈𝑘〉. 

 

 

Figure 6.11 The evolutionary optimized networks with 500 nodes and 500 links to 

maximize the eigenvalue ratio 𝜆2(𝐋)/𝜆𝑛(𝐋). 
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6.3.2 Slow consensus: maximizing convergence time for consensus 

In this subsection, the evolutionary optimization is applied to minimize the eigenvalue 

ratio 𝑅 = 𝜆2(𝐋)/𝜆𝑛(𝐋). Figure 6.12 shows the results of the optimization. It is clear 

that the evolutionary optimization can create networks that have very small eigenvalue 

ratio R compared to CPA networks and KN networks, which also have small R. The 

crated networks have small 𝜆2(𝐋) and large 𝜆𝑛(𝐋) to minimize R as shown in Figure 

6.13 and Figure 6.14. 

The evolutionary optimized networks have characteristic topology as shown in 

Figure 6.15: consisting of a dense core network and line shaped network. The dense 

core has many pathways to communicate with others in the core, but the line network 

does not have redundant path for consensus dynamics. 

The difference of R between evolutionary optimized network and CPA or KN 

networks becomes small along with the increase of the average degree of networks. 

This seems to come from the failure to make long line shaped network by evolutionary 

optimization, because the optimized network at average degree 〈𝑘〉 = 30 has much 

shorter line shaped network, which is shown in Figure 6.16, compared to the network 

when the average degree is relatively small (Figure 6.15). 

 

 

Figure 6.12 The eigenvalue ratio 𝑅 = 𝜆2(𝐋)/𝜆𝑛(𝐋)  of Laplacian matrix 𝐋  of 

evolutionary optimized network (GA), the partial complete graph (CPA) and KN 

network (KN) is plotted as a function of the average degree. 
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Figure 6.13 The second minimum eigenvalue 𝜆2(𝐋)  of Laplacian matrix 𝐋  of 

evolutionary optimized network (GA), the partial complete graph (CPA) and KN 

network (KN) is plotted as a function of the average degree. 

 

 

 

Figure 6.14 The maximum eigenvalue 𝜆𝑁(𝐋) of Laplacian matrix 𝐋 of evolutionary 

optimized network (GA), the partial complete graph (CPA) and KN network (KN) is 

plotted as a function of the average degree. 
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Figure 6.15 The evolutionary optimized networks with 100 nodes, which minimize the 

eigenvalue ratio 𝜆2(𝐋)/𝜆𝑛(𝐋). The left network has 200 links and right network has 

300 links. 

 

 

Figure 6.16 The evolutionary optimized networks with 100 nodes and 1500 links to 

minimize the eigenvalue ratio 𝜆2(𝐋)/𝜆𝑛(𝐋).  
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6.4 Heuristic models for optimizing consensus dynamics 

In this section, heuristic models to minimize or maximize the convergence time of 

consensus dynamics is proposed.  

6.4.1 Fast consensus (Ring-Trees model) 

This subsection proposes ring-trees network model as heuristic model to design 

optimal networks for fast consensus when the network is sufficiently sparse, in precise 

〈𝑘〉 = 2. 

The ring-trees network has a ring network with 𝑛𝑟 nodes at the center and 𝑛𝑟 

tree networks with 𝑛𝑡 nodes Figure 6.17. Therefore, total number of nodes in the 

network is 𝑁 = 𝑛𝑡 ∗ 𝑛𝑟. This network model has same topological properties of the 

evolutionary optimized network with the average degree 〈𝑘〉 = 2. Figure 6.18 shows 

example of ring-trees network with 100 nodes. The topology of ring-trees network is 

controlled by the parameter 𝛼 that is the ratio of 𝑛𝑡 to 𝑛𝑟 (=𝑛𝑡/𝑛𝑟). Figure 6.19 

shows the topology of ring-trees network having different parameter 𝛼. By changing 

𝛼, the network topology is changed from ring network to tree network, and the 

network with intermediate value of 𝛼 has largest eigenvalue ratio 𝑅 (Figure 6.20). 

The optimal network has modularized tree networks and a ring network at the center. 

This result shows the certain size modularized networks that divide agents to groups 

are necessary for the fast consensus when the network is sparse. Figure 6.21 shows the 

performance of ring-trees network for fast consensus compared to the evolutionary 

optimized networks and Ramanujan networks with changing the number of nodes from 

50 nodes to 500 nodes. 

 

 

 

 

 

 

Figure 6.17 Model of ring-trees network. 

  



113 

 

 

Figure 6.18 Example of ring-trees network: Total number of nodes N: 100, Number of 

nodes in each tree 𝑛𝑡: 20, Number of nodes in each tree 𝑛𝑟: 5. 

 

 

 

Figure 6.19 The sequence of ring-trees networks having different 𝛼 is visualized. The 

total number of nodes in all cases is 500. The ring-trees network with 𝛼 = 20 has the 

largest 𝑅 (Champion data). 
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Figure 6.20 The eigenvalue ratio 𝜆2(𝐋)/𝜆𝑛(𝐋) of Laplacian matrix 𝐋 of ring-trees 

network is plotted as a function of the ratio of nodes 𝑛𝑡/𝑛𝑟. The total number of nodes 

in all cases is 500. 

 

Figure 6.21 The eigenvalue ratio 𝜆2(𝐋)/𝜆𝑛(𝐋) of Laplacian matrix 𝐋 of networks is 

plotted as a function of the total number of nodes in network: Ring-trees networks with 

best parameter 𝛼 (Ring-trees (Champion data)), Evolutionary optimized networks for 

fast consensus (GA), and Ramanujan networks (Ramanujan). All networks have 

average degree 〈𝑘〉 = 2. 
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6.4.2 Slow consensus (Core with Line model) 

This subsection proposes a core with line network as heuristic model for slow 

consensus. 

The line network with a single core has 𝑁𝑀 nodes in the dense core and 𝑁𝐿𝑖𝑛𝑒 

nodes in the line network. There are 𝐿𝑀 links in the core and 𝐿Line links in the line 

network. If the total resource of building network is limited by 𝑁 nodes and 𝐿 links, 

the following relationships between variants are obtained as, 

 

𝑁       = 𝑁𝑀 +𝑁Line, 

𝐿        = 𝐿𝑀 + 𝐿Line, 

𝐿Line  = 𝑁Line. 

(6.18) 

 

Figure 6.22 The diagram of network consisting of a dense core and a line network. 

 

When the length of line network with 𝑁Line nodes is given in addition to total 

nodes and total links (𝑁 and 𝐿), the 𝑁𝐿𝑖𝑛𝑒 should meets the following condition to 

avoid disconnected network and double links between same two nodes. 

 𝑁 −𝑁𝐿𝑖𝑛𝑒 − 1 ≤ 𝐿 −𝑁𝐿𝑖𝑛𝑒 ≤𝑁−𝑁𝐿𝑖𝑛𝑒 𝐶2. 
(6.19) 

Figure 6.23 shows the comparison of the eigenvalue ratio 𝑅 = 𝜆2(𝐋)/𝜆𝑁(𝐋) of 

networks, in which the maximum number of nodes in line network is set. The line 

network with a dense core has small 𝑅, and it implies the speed of the consensus 

process is very slow.  

It is straightforward question that what will happen when the number of core is 

increased. Figure 6.24 shows the eigenvalue ratio 𝑅 of the networks, which consists 

of two cores connected by line network. It is shown that along with the increase of the 

number of nodes in line network, the eigenvalue ratio decrease linearly. The increase of 

number of core network affects efficiency to reduce the ratio. When the number of 

nodes in the line network is relatively small, two cores with the line network can have 

more small 𝑅 than a core with line network. However, due to the topological upper 

bound, the maximum number of nodes in the line network is larger in the case of single 

core than the case of two cores. Then, when the maximum number of nodes in the line 

network is set, the core with line network can have the smallest ratio 𝑅. 
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Figure 6.23 The eigenvalue ratio 𝜆2(𝐋)/𝜆𝑛(𝐋) of networks is plotted as a function of 

average degree of networks with 100 nodes. 

 

 

Figure 6.24 The eigenvalue ratio 𝜆2(𝐋)/𝜆𝑛(𝐋) of a core with line network and two 

cores with line network is plotted as a function of the number of nodes in the line 

network, which is connected to core network. A total node is 500 and total link is 2000.   
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6.5 Simulation on optimal networks 

In this section, consensus dynamics between networked agents is simulated. The 

number of agents is 100, and they have number that is given randomly from the space 

𝑆 = [0, 100]  as the initialization. The several types of network are used: the 

evolutionary optimized network for maximization or minimization of consensus 

dynamics, Ramanujan graph, Random network, Scale free network by Balabási-Albert 

model, exponential network, CPA network proposed in Chapter 4, KN network 

proposed in Chapter 4, and a core with line networks. All agents communicate with 

adjacent agents along the links simultaneously, of which protocol is defined by 

equation (6.1). Note that it is assumed that the formation of consensus between agents 

is achieved when the standard deviation of numbers of agents becomes less than 10−4 

and each plot comes from over 100 iterations.  

Figure 6.25 shows the eigenvalue ratio 𝑅 = 𝜆2(𝐋)/𝜆𝑁(𝐋) of each network. It is 

shown that the evolutionary optimization and network model can create networks that 

maximize or minimize R the index of consensus dynamics respectively. Figure 6.26 

shows the average time step for the formation of consensus between agents. It is 

interesting that the network with same number of nodes and same number of links can 

have drastically different average time step for consensus, which depends on the 

network topology. The evolutionary optimized networks to maximize consensus 

dynamics have about same performance with Ramanujan graphs that belong to 

k-random regular graph. This implies the regularity of network is not necessary 

condition for the fast consensus, because the optimized networks are not k-regular 

network (Figure 6.10). On the other hand, the evolutionary optimized networks for 

minimization of consensus dynamics (GA (minimization)) and a core with line network 

(Single core + Line) need extremely longer time to achieve the consensus than average 

consensus time on other networks. Especially on a core with line network, the average 

consensus time does not decrease even if the average degree of the network increases. 

In order to compare how the consensus process proceed on the two extreme cases 

(evolutionary optimized network for maximization of consensus speed and a single 

core network with line network for minimizing consensus speed), the state of each 

agents is plotted as a function of time step on Figure 6.27 and Figure 6.28 respectively. 

Note that in this case the number 𝑖 is assigned to agent 𝑖 initially for the visualization. 

On a core with line network (Figure 6.27), the consensus between agents in the core is 

achieved at first. After that they try to achieve the global consensus. The all agents in 

the core network have to communicate with agents in the line network via a single 

node, which connects the core and line network. The decrease of the chances of the 

global interaction between agents make the time of consensus dynamics very long. On 

the other hand, consensus dynamics between agents is achieved very smoothly on the 

evolutionary optimized networks (Figure 6.28). 

As shown in Figure 6.21, when network has little redundancy to form connected 

network, which means average degree is 〈𝑘〉 = 2  in this case, evolutionary 



118 

 

optimization can design networks on which agents can make consensus much faster 

than Ramanujan graphs. Figure 6.29 compares the average convergence time of 

consensus dynamics on ring-trees network, evolutionary optimized networks for fast 

consensus (GA) and Ramanujan graphs. The number of nodes is changed from 50 to 

500 nodes. In every cases, ring-trees network and evolutionary optimized networks 

form a fast consensus compared to Ramanujan graphs. Especially, ring-trees network 

can make faster consensus than the evolutionary optimized networks. 

Figure 6.30 compares consensus dynamics on ring-trees network and Ramanujan 

network when they have 100 nodes and 100 links. Consensus dynamics on ring-trees 

network is achieved much faster than Ramanujan network where the time of consensus 

is 1201 steps on ring-trees network and over 5000 steps on Ramanujan network. On the 

ring-trees network where agents are divided into each tree network, local consensus is 

promoted in each tree network at first. After that, the global consensus is formed via 

the ring network. It is very interesting that this simple mechanism makes big difference 

between these networks on the convergence time of consensus dynamics.  
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Figure 6.25 The eigenvalue ratio 𝜆2(𝐋)/𝜆𝑛(𝐋) of Laplacian matrix of each network is 

plotted as a function of the average degree. Each legend represents the type of network 

of agents. 

 

 

 
Figure 6.26 The average time step for the formation of consensus between 𝑁 = 100 

networked agents is plotted as function of the size of the average degree. Each legend 

represents the type of network of agents. 
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(a) The plot range of time step is [0, 105] 

 

(b) The plot range of time step is [0, 500] 

Figure 6.27 The diagram of consensus dynamics between agents on a single core + line 

network with 𝑁 = 100 nodes and 𝐿 = 500 links. The number of agents in a single 

core is 34. In this case the number 𝑖 is assigned to agent 𝑖 initially.  
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Figure 6.28 Consensus dynamics on evolutionary optimized network for fast consensus 

with 𝑁 = 100 nodes and 500 links. In this case the number 𝑖 is assigned to agent 𝑖 

initially. 

 

 

Figure 6.29 The average time step for the formation of consensus on several networks 

with average degree 〈𝑘〉 = 2 is plotted as function of the number of nodes in a 

network. Each legend represents the type of network: Evolutionary optimized networks 

for fast consensus (GA), Ramanujan graph (Ramanujan), networks by heuristic 

network design model for fast consensus (Ring-trees structure (Champion data)), which 

are selected as having largest eigenvalue ratio 𝜆2(𝐋)/𝜆𝑛(𝐋). 
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Figure 6.30 Consensus dynamics on (a) ring-trees network (𝑛𝑡 = 20, 𝑛𝑟 = 5) and (b) 

Ramanujan network. They have 100 nodes and 100 links. The network topologies are 

drawn for understanding of network settings. The exact convergence time of each 

network is 1201 steps on ring-trees network and over 5000 steps on Ramanujan 

networks. 
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Chapter 7  

Dynamical Processes on Modular Networks 

A network composed of interconnected sub-networks is called “modular networks”, 

where there are a lot of interactions in each module but a few interactions of 

inter-modules. This chapter studies dynamical processes on the modular networks and 

also proposes recursive design method to design very large-scale modular networks, 

which interconnect optimized networks as modules recursively. 

 

7.1 Motivation 

In our life, the interconnection of networks, which are relatively small or medium size, 

is usually used to form a very large-scale network efficiently. For example, in the case 

of an airline network, each domestic airline is interconnected by international airlines, 

which form literally world-wide network. In the financial network, city bank, local 

bank and public-sector financial institutions each has their own network, and they form 

a huge financial network by their interconnections such as transactional relationship. 

Furthermore there are other examples in road networks, power transmission networks 

and social communities. These types of network are called “modular networks”, 

“network of networks” or “community network” and they attract the interest of 

researchers [52, 67, 70, 93, 95, 115-119].  

Modularity is an important concept for understanding the structure and the 

functions of networked systems. Recently, Gao et al. [67] studied the relationship 

between the number of modular networks and the performance of modular networks 

connected randomly by using percolation dynamics, which are actually called 

“interdependent networks”. They introduced interdependent links to connect a pair of 

nodes in different modular networks, which represents the relationship that a function 

of a node depends on the state of a node connected. The interdependent network is very 

destructible compared to a single network having only connecting links and the 

threshold fraction of removed nodes for breaking network connectivity becomes much 
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smaller. The interdependency of modular networks works as an amplifier of the failure 

of nodes. 

The modularization of a network is also used to protect complex networked 

systems by reducing contact with the external modular-networks [120]. The sparse 

connectivity of inter-modules prevents the spreading of risk contagion. In those 

systems, the links between modular networks do not represent a strong tie such as 

interdependent links, but they are pathways of the interaction of agents. The difference 

of links connecting inter-modules changes the influence of modularization. 

Barabási et al. used modular networks to replicate complex networks in real life 

[93]. The proposed modular networks can form a network where the scale-free 

property in the degree distribution and high clustering coefficient coexist, which are 

common properties in biological, sociological and technological systems. All above 

mentioned results point to the importance of understanding dynamical processes on 

modular networks. 

In previous studies about dynamical processes on modular networks [67, 70], 

simple networks, including random network, tree network or star network, are 

considered as a topology of inter-modules. In addition the number of modules is 

relatively small, for example modular networks comprising 4 modularized networks 

are studied in [70].  

In the past, many papers have studied modular networks to discover something 

new which is not observed on non-modular networks. However, this dissertation 

studies modular networks in terms of network design method.  

This chapter proposes a network design method by recursive structure of a unit 

modular network, where modular networks have a topology of inter-modules, which is 

the same as a modular network. It is based on an intuitive idea that the optimal 

topology defining the interaction between nodes in a network should be optimal to 

define the interaction between modular networks. The proposed design model can deal 

with modular networks comprising many modules, and it enables the consideration of 

the influence of the topology of inter-modules toward dynamical processes. This 

chapter also demonstrates the performance of the network design model under several 

scenarios by numerical simulations. Note that the interdependency between a pair of 

nodes is not considered in this dissertation as in Barabási et al [93]. 
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7.2 A recursive design model of modular networks 

The one of key properties on modular networks is how modularized networks are 

interconnected. The recursive design model is a network model that interconnects 

modular networks recursively and we can design a very large-scale network.  

The formation of the recursive network starts by the creation of a relatively small 

optimized network as a unit network (modular network) (Figure 7.1(a)). Next 𝑛 

replicas of the unit network are generated, where 𝑛 represents the number of nodes in 

the original unit network. Each replicated network is deployed at the position of each 

node in the unit network (Figure 7.1(b)), and they are interconnected by links (Figure 

7.1(c)).  

The most important property of the network design model is that the topology 

between modular networks is the same with the topology of the unit network. The 

number of links between modular networks is the same number of links in a unit 

network 𝑙. Then, the total number of links interconnected network is 𝑙(𝑛 + 1). The 

average degree is 2𝑙(𝑛 + 1)/𝑛2  = 2𝑙/𝑛 + 2𝑙/𝑛2  = 〈𝑘𝑢𝑛𝑖𝑡 〉 + 𝜖 , which is almost 

same size compared to the average degree of a single unit network 〈𝑘𝑢𝑛𝑖𝑡〉. 

The second point of the network design model is the method interconnecting a 

pair of nodes, which belong to different unit networks. Let’s assume 𝐷𝐾 represents the 

number of adjacent modular networks of intended modular network 𝐾, and 𝑑𝑖,𝐾 

represents the degree of node 𝑖 in modular network 𝐾. When the modular network 𝐾 

is connected to one of adjacent modular networks by a link, the probability that node 𝑖 

in the modular network 𝐾 will be selected as one of edge of the connecting link is 

defined by the following equation (7.1), 

  𝑝(𝑑𝑖,𝐾|𝐷𝐾) =
1

1 + 𝛼|𝐷𝐾 − 𝑑𝑖,𝐾|
/∑

1

1 + 𝛼|𝐷𝐾 − 𝑑𝑖,𝐾|𝑖

, (7.1) 

where α is non-negative parameter to control which nodes will be selected. If 𝛼 is 

large, the probability that a node 𝑖 with degree 𝑑𝑖,𝐾 ≠ 𝐷𝐾 to be selected becomes 

small. On the other hand, if 𝛼 = 0, topology of inter-modules is still recursive, but a 

pair of nodes used for connecting modules is selected randomly (Figure 7.1(d)). For 

comparison, modular networks, which are connected randomly, are also shown in 

(Figure 7.1(e)) 
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Figure 7.1 The recursive design of a large-scale network with modular networks: The 

topology of each modular network is also CPA which is a network proposed in Chapter 

4. Each modular network has 25 nodes and 50 links, and the formed modular networks 

have 25 modularized networks: totally 625 links and 1300 links. (c), (d): The topology 

between modular networks is CPA. Each modular network is interconnected by 

equation (7.1). (e): Modularized networks are interconnected randomly. 

7.3 Simulation on modular networks 

In this section, a set of simulation results is shown regarding probabilistic diffusion, 

cascade dynamics and consensus dynamics on recursively designed networks with 

modular networks. In each case of simulation, the performance of modular networks 

with recursive architecture and modular networks connected randomly is compared. 

The simulation results support the recursively designed modular networks have better 

performance than modular networks connected randomly. In order to understand the 

influence of the modularization of a network, the optimal modular networks is also 

compared to a single globally optimized network. Note that the size of modular 

network is set to relatively small size (ex. 25 nodes or 26 nodes) for the comparison. 

However, the recursive network design model can be applied directly to design a very 

large-scale modular networks, for example, if network with 500 nodes is used as 

modular network, we can design networks with 250,000 nodes easily. The simulations 

on those very large-scale networks are discussed in next section 7.4. 
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7.3.1 Probabilistic diffusion 

(1) Modular networks with CPA as a module (maximizing probabilistic diffusion) 

Maximizing probabilistic diffusion by SIS model on modular networks is demonstrated. 

From the results of Chapter 4, the single globally optimized network for maximizing 

probabilistic diffusion is a CPA network, which has largest maximum eigenvalue of the 

adjacency matrix. The analysis by simulation begins with the comparison of the 

maximum eigenvalue of the adjacency matrix between modular networks by the 

proposed recursive network design and modular networks connected randomly, in 

which each module network is formed using CPA model (Figure 7.2). It is shown that 

modular networks with recursive structure have larger maximum eigenvalue compared 

to modular networks connected randomly. This implies modular networks with 

recursive structure are more diffusive and it is more suitable for maximizing 

probabilistic diffusion.  

The maximum eigenvalue of the modular networks with recursive structure is also 

compared to a single globally optimized CPA network (Figure 7.3). It is shown that the 

modularization of network make a network less diffusive and the influence is increased 

with the size of average degree 〈𝑘〉. 

The numerical simulation is also done with the average degree 〈𝑘〉 = 4 (Figure 

7.4). At each simulation, one node with largest degree in a single CPA network or one 

node with largest degree in modular network with most adjacent modular networks in 

modular networks is selected as a trigger of probabilistic diffusion. The fraction of 

infected nodes at a steady state is observed and the average value of 100 same 

experiments is plotted on vertical axis. The score on horizontal axis is relative infection 

rate (=𝛽/ 𝛿) normalized by the mathematical threshold of a single CPA network (the 

inverse of maximum eigenvalue of the adjacency matrix 𝜆1(𝐀CPA)). The modular 

networks with recursive topology takes off more early than modular networks 

connected randomly.  

The modularization of a network makes a network less diffusive even if each 

modular network has optimal topology (CPA), but the modular networks with recursive 

topology can be most diffusive under such a condition. 

 

 

 

 

 

 

 

 



128 

 

 

Figure 7.2 The maximum eigenvalue 𝜆1of adjacency matrix of modular networks are 

plotted as a function of average degree 〈𝑘〉. Modular networks (recursive: 𝛼 = 3): the 

modular networks by proposed recursive network design (𝛼 = 3 in equation (7.1)). 

Modular networks (random connection): modular networks connected randomly. Both 

of modular networks consist of 25 CPA networks with 25 nodes, and then they have 

625 nodes totally. Note that the variable 𝛼 is a parameter of equation (7.1). 

 

 
Figure 7.3 The maximum eigenvalue 𝜆1 of adjacency matrix is plotted as a function of 

average degree. Single network (CPA): single CPA network with 625 nodes. Modular 

networks (recursive: 𝛼 = 3): same with Figure 7.2.  
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Figure 7.4 The fraction of infected nodes at a steady state on networks is plotted as a 

function of Score, which is the relative infection rate 𝛽/𝛿 divided by the tipping point 

of the diffusion 1/𝜆1 = 1/32.4 of single CPA network that has 〈𝑘〉 = 4 (score =

 𝛽/𝛿 ∗ 32.4). The curing rate 𝛿 is always 0.1. The legend represents same network in 

Figure 7.2 and Figure 7.3. 

(2) Modular networks with random regular network as a module (Minimizing 

probabilistic diffusion) 

Minimizing probabilistic diffusion by SIS model on modular networks is demonstrated. 

From the results of Chapter 4, the globally optimized single network for minimizing 

probabilistic diffusion is random regular network, which has smallest maximum 

eigenvalue of the adjacency matrix. The analysis begins with the comparison of 

maximum eigenvalue of the adjacency matrix. Figure 7.5 shows the maximum 

eigenvalue of modular networks by the proposed recursive network design model and 

modular networks connected randomly, where each modular network is random regular 

network. It is shown that modular networks with recursive topology has almost same 

maximum eigenvalue compared to modular networks connected randomly. This 

implies both of modular networks have same threshold for probabilistic diffusion.  

The maximum eigenvalue of the modular networks by recursive network design 

model is also compared to single random regular network, which is globally optimized 

(Figure 7.6). The maximum eigenvalue of those two types of networks is plotted on the 

same line. This means both modular networks with recursive structure and single 

network optimized globally has same small threshold. 

The numerical simulation is also done to demonstrate the performance of those 

networks including the single random regular network with 625 nodes and modular 
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networks consisting of 25 random regular networks with 25 nodes, which have same 

average degree 〈𝑘〉 = 4 (Figure 7.7). At each simulation, the state of one randomly 

selected node is changed to be infected as a trigger of probabilistic diffusion. The 

fraction of infected nodes at a steady state is observed and the average value of 100 

same experiments is plotted. From results, it is clear that the topology of inter-modules 

have little influence on the threshold of modular networks, which is the same value 

with single random regular network optimized globally.  

The modularization of a network does not change the threshold of a network into 

small one if single network has already been optimized for minimizing probabilistic 

diffusion. 

 

 

Figure 7.5 The maximum eigenvalue 𝜆1 of adjacency matrix of modular networks are 

plotted as a function of average degree of network. Modular networks (recursive: 

𝛼 = 3): the modular networks by proposed recursive network design (𝛼 = 3  in 

equation (7.1)). Modular networks (random connection): modular networks connected 

randomly. Both of modular networks consist of 25 random regular networks with 25 

nodes, and then they have 625 nodes totally. 
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Figure 7.6 The maximum eigenvalue 𝜆1of adjacency matrix is plotted as a function of 

average degree of network. Single network (random regular): single random regular 

network with 625 nodes. Modular networks (recursive: 𝛼 = 3): same with Figure 7.5.  

 

 

Figure 7.7 The fraction of infected nodes at a steady state on networks is plotted as a 

function of Score, which is the relative infection rate 𝛽/𝛿 divided by the tipping point 

of the diffusion 1/𝜆1 = 1/4 of single random regular network that has 〈𝑘〉 = 4 

(score =  𝛽/𝛿 ∗ 4). The curing rate 𝛿 is always 0.1. The legend represents same 

network in Figure 7.5 and Figure 7.6.  
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7.3.2 Cascade dynamics 

(1) Modular networks with GA network as a module (maximizing cascade window) 

Maximizing cascade dynamics on modular networks is demonstrated. From the results 

of Chapter 5, the globally optimized network for maximizing cascade window is 

achieved using the proposed P model. The cascade window of the single network using 

P model is compared to modular networks with recursive structure of evolutionary 

optimized network for maximizing cascade window and modular networks connected 

randomly by numerical simulations (Figure 7.8). At each simulation, one node selected 

randomly becomes a trigger of cascade dynamics. It is shown that the modularization 

of a network makes the size of cascade window small. It is good results for protecting 

networked system from cascade failure, but it is bad results for diffusion of innovation 

by cascade dynamics on coordination game. It is also shown that the modular networks 

with recursive structure has large cascade window especially at small average degree 

compared to modular networks connected randomly. 

The modularization of a network makes a network less diffusive like a 

probabilistic diffusion even if each modular network has optimal topology, but the 

modular networks with recursive topology can maximize the cascade window. 

 

Figure 7.8 Cascade window of networks: Single network (P model): single network 

with 500 nodes by P model. Modular networks (recursive: 𝛼 = 3): modular networks 

by proposed recursive network design (𝛼 = 3 in equation (7.1)). Modular networks 

(random connection): modular networks connected randomly. Both modular networks 

consist of 25 optimal networks by evolutionary optimization with 25 nodes, which 

have 625 nodes totally.  



133 

 

(2) Module networks with CPA network as a module (minimizing cascade) 

Minimizing cascade dynamics on modular networks is demonstrated. From the results 

of Chapter 5, the globally optimized network for minimizing cascade window is 

achieved using the proposed CPA model. The cascade window of the single network 

using CPA model is compared to modular networks with recursive structure of CPA 

network and modular networks connected randomly by numerical simulation (Figure 

7.9). At each simulation, one node is selected randomly as a trigger of cascade 

dynamics. The modular networks with recursive structure has narrow cascade window 

compared to modular networks connected randomly. This implies modular networks 

with recursive structure are more suitable to prevent cascade failure. 

It is also shown the modularization of network makes a network more diffusive 

even if each modular network has optimal topology for minimizing cascade window 

(CPA). This result meets the study by Young [12, 105], which told the modular 

structure in the network is essential as a foothold for diffusion on cascade dynamics. 

The modularization limits the number of interconnected nodes, which relaxes the 

necessary number of adopting adjacent agents for an intended agent to adopt. 

Considering the expansion of cascade window in this simulation along with the 

results of previous subsection, the effect of the modularization is not only to minimize 

cascade window, and it depends on the topology of modular networks. 

  

 

Figure 7.9 Cascade window of networks: Single network (CPA): single network with 

500 nodes by CPA, Modular networks (recursive: 𝛼 = 3): the modular networks by 

proposed recursive network design (𝛼 = 3 in equation (7.1)). Modular networks (non 

recursive): modular networks connected randomly. Both modular networks consist of 

25 CPA networks with 25 nodes, which have 625 nodes totally. 



134 

 

7.3.3 Consensus dynamics 

(1) Modular network with GA network as a module (fast consensus) 

Fast consensus dynamics on modular networks is demonstrated. Eigenvalue ratio of the 

laplacian matrix of each module is compared in Figure 7.10. GA optimized network 

have a larger eigenvalue ratio compared to other networks. Especially there is a big 

difference between the optimized network (GA) and Ramanujan network when the 

average degree is 〈𝑘〉 = 2 . 

Modular networks are formed by interconnecting those modules recursively or 

randomly. The eigenvalue ratio of those modular networks using GA networks as a unit 

module is shown in Figure 7.11. They are also compared to single globally optimized 

GA network. It is shown that the modularization of a network makes small eigenvalue 

ratio and also prevents fast consensus.  

On the other hand, the modular networks with recursive topology have larger 

eigenvalue ratio than modular networks connected randomly. It implies modular 

networks with recursive topology will make fast consensus. The difference of 

eigenvalue ratio increases along with the decrease of average degree. The importance 

of interaction patters of inter-modules becomes relatively large on sparse networks. 

The consensus processes are simulated among 676 networked agents (Figure 7.12). 

Modular networks consist of 26 optimized networks (GA) with 26 nodes as modules. 

The initial value of each agent 𝑖 is given randomly from the space S = [0, 676]. All 

agents communicate with adjacent agents along the links simultaneously, of which 

protocol is defined by equation (6.1). Note that it is assumed that the formation of 

consensus between agents is achieved when the standard deviation of numbers of 

agents becomes less than 10−4 and each plot comes from over 100 iterations of same 

simulations.  

It is confirmed that the convergence time becomes larger on modular networks 

than single globally optimized networks. In addition, consensus dynamics is still faster 

on the modular networks with recursive structure than modular networks connected 

randomly, especially when network is sparse (〈𝑘〉 ≃ 2). 
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Figure 7.10 The eigenvalue ratio 𝜆2(L)/𝜆𝑛(L) of Laplacian matrix of each network is 

plotted as a function of the average degree. GA: network optimized by evolutionary 

optimization method for maximizing eigenvalue ratio. Ramanujan: Ramanujan network. 

Random: random network. All networks have 26 nodes. 

 

Figure 7.11 The eigenvalue ratio 𝜆2(L)/𝜆𝑛(L) of Laplacian matrix of each network is 

plotted as a function of the average degree. Single network (GA): single optimal 

network with 676 nodes by GA optimized for fast consensus. Modular networks (GA, 

recursive: 𝛼 = 3): modular networks by proposed recursive network design (𝛼 = 3 in 

equation (7.1)). Modular networks (GA, random connection): modular networks 

connected randomly. Both modular networks consist of 26 optimal networks by 

evolutionary optimization with 26 nodes, which have 676 nodes totally.  
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Figure 7.12 The average time step of consensus dynamics among 𝑁 = 676 networked 

agents is plotted as function of the average degree. Each legend represents same in 

Figure 7.11.  
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7.4 Design of very large-scale networks with recursive modular 

structure 

The very large-scale network with 250,000 nodes, which consists of 500 modular 

networks having 500 nodes, is designed by the recursive design method. With 

numerical simulations, the network performance is investigated regarding probabilistic 

diffusion, cascade dynamics, and consensus dynamics on modular networks with 

recursive topology and modular networks connected randomly. 

7.4.1 Probabilistic diffusion 

(1) Modular networks with CPA as a module (maximizing probabilistic diffusion) 

Figure 7.13 shows the fraction of infected nodes under the SIS model. Modular 

networks consist of 500 optimal modular networks (CPA networks) having 500 nodes 

and average degree 〈𝑘〉 = 4. The average degree of inter-modules is also 〈𝑘〉 = 4. 

Therefore, the link density between inter-modules is sufficiently small compared to 

inside-module. Single network in the figure represents CPA network with 500 nodes 

and 〈𝑘〉 = 4. Initially, 0.2% nodes in the network are infected as trigger of the 

diffusion. To be precise, a node with largest degree in each modular network is infected 

initially in modular networks, and a node with largest degree is infected initially in 

single network (CPA).  

The simulation results show the tipping point seems to be nearly not affected by 

connecting modular networks recursively. The tipping point is almost same value in the 

case of modular networks connected randomly and single network (CPA). The 

recursive structure has no additional effect to maximize probabilistic diffusion when 

the each modular network is optimized. 

(2) Modular network with random regular network as a module (Minimizing 

probabilistic diffusion)  

Figure 7.14 shows the fraction of infected nodes under the SIS model. Modular 

networks consist of 500 optimal modular networks (random regular networks) having 

500 nodes and average degree 〈𝑘〉 = 4. The average degree of inter module is also 

〈𝑘〉 = 4 . Therefore, the link density between inter-modules is sufficiently small 

compared to inside-module. Single network in the figure represents random regular 

network with 500 nodes and 〈𝑘〉 = 4. Initially, 0.2% nodes in the network are 

infected as trigger of the diffusion. To be precise, a randomly selected node in each 

modular network is infected initially in modular networks, and a randomly selected 

node is infected initially in single network (random regular).  

The simulation results show the tipping point seems to be nearly not affected by 

connecting modular networks recursively. The tipping point is almost same value in the 

case of modular networks connected randomly and single network (random regular). 
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Thus, the recursive structure has no additional effect to minimize probabilistic 

diffusion when the each modular network is optimized. 

 

 

 

 

Figure 7.13 The fraction of infected nodes at a steady state on networks is plotted as a 

function of Score, which is the relative infection rate 𝛽/𝛿 normalized by the tipping 

point of the diffusion 1/𝜆1 = 1/32.4 of CPA network that has 500 nodes and average 

degree 〈𝑘〉 = 4 (score =  𝛽/𝛿 ∗ 32.4). The curing rate 𝛿  is always 0.1. Modular 

networks (recursive: 𝛼 = 3): modular networks consist of 500 modules (CPA network) 

with recursive structure. Modular networks (random connection): modular networks 

consist of 500 modules (CPA network) with random connection. Each module has 500 

nodes and then the modular networks have totally 250,000 nodes. The average degree 

of inter-module is the same with inside module 〈𝑘〉 = 4. Single network (CPA): CPA 

network consisting of 500 nodes with 〈𝑘〉 = 4. Note that the variable 𝛼 is a parameter 

of equation (7.1). 
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Figure 7.14 The fraction of infected nodes at a steady state on networks is plotted as a 

function of Score, which is the relative infection rate 𝛽/𝛿 normalized by the tipping 

point of the diffusion 1/𝜆1 = 1/4 of random regular network that has 500 nodes and 

〈𝑘〉 = 4 (score =  𝛽/𝛿 ∗ 4). The curing rate 𝛿  is always 0.1. Modular networks 

(recursive: 𝛼 = 3 ): modular networks consist of 500 modules (random regular 

network) with recursive structure. Modular networks (random connection): modular 

networks consist of 500 modules (random regular network) with random connection. 

Each module has 500 nodes and then the modular networks have totally 250,000 nodes. 

The average degree of inter-module is the same with inside module 〈𝑘〉 = 4. Single 

network (random regular): random regular network consisting of 500 nodes with 

〈𝑘〉 = 4. Note that the variable 𝛼 is a parameter of equation (7.1).  
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7.4.2 Cascade dynamics 

(1) Module networks with P model as a module (maximizing cascade window) 

Figure 7.15 compares cascade window of networks. Modular networks consist of 500 

networks. Each module is designed using P model with 500 nodes as an optimal 

network for maximizing cascade window. Single network in the figure represents 

network designed using P model with 500 nodes.  

At each simulation, one randomly selected node in each modular network or 

single network is activated initially as trigger of cascade. The interconnected modular 

networks have narrower cascade window than cascade window of a module (Single 

network). The result comes from the property of modular networks that have few links 

between inter-modules. The sparse connectivity between modules prevents the 

influence of activated nodes from spreading into nodes in other modules, even if all 

nodes in one module become activated. Furthermore modular networks that are 

randomly connected have wider cascade window than modular networks with recursive 

topology.  

 

 

Figure 7.15 Cascade window of networks. Single network (P model): single network 

by P model with 500 nodes and average degree 〈𝑘〉 = 4. Modular networks (recursive: 

𝛼 = 3): modular networks consist of 500 modules (P model) with recursive structure. 

Modular networks (random connection): modular networks consist of 500 modules (P 

model) with random connection. Each module has 500 nodes and then the modular 

networks have totally 250,000 nodes. The average degree of inter-module is the same 

with inside module. Note that the variable 𝛼 is a parameter of equation (7.1).  
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(2) Module networks with CPA network as a module (minimizing cascade window) 

Figure 7.16 compares cascade window of networks. Modular networks consist of 500 

networks. Each module is designed using CPA with 500 nodes as an optimal network 

for minimizing cascade window. Single network in the figure represents network 

designed using CPA with 500 nodes. 

At each simulation, one randomly selected node in each modular network or 

single network is activated initially as trigger of cascade. The interconnected modular 

networks have narrower cascade window than cascade window of a module (single 

network). The result comes from the discontinuous structure of modular networks 

mentioned in previous simulations. Modular networks with recursive topology have 

same or narrower cascade window than modular networks that are randomly 

connected. 

 

 

 

Figure 7.16 Cascade window of networks. Single network (CPA): single CPA network 

with 500 nodes and average degree 〈𝑘〉 = 4. Modular networks (recursive: 𝛼 = 3): 

modular networks consist of 500 modules (CPA network) with recursive structure. 

Modular networks (random connection): modular networks consist of 500 modules 

(CPA network) with random connection. Each module has 500 nodes and then the 

modular networks have totally 250,000 nodes. The average degree of inter-module is 

the same with inside module. The variable 𝛼 is a parameter of equation (7.1). 

  



142 

 

7.4.3 Consensus dynamics 

Modular network with GA network as a module (fast consensus) 

Figure 7.17 compares the average time steps of consensus dynamics between modular 

networks with recursive topology and modular networks connected randomly, where 

optimized network by GA is used as a modular network. On modular networks, 

consensus is achieved among nodes in the same module at first. After that the 

consensus of inter-modules is achieved. The results show that the optimal connectivity 

for fast consensus in a module is also optimal for fast consensus of inter-modules.  

The modular networks by a recursive network design method are effective to 

minimize the average time for fast consensus. 

 

 

 

Figure 7.17 Average time steps of consensus dynamics: Modular networks (GA, 

recursive 𝛼 = 3): modular networks consist of 500 optimized networks with recursive 

topology. Modular networks (GA, random connection): modular networks consist of 

500 optimized networks with random connection. Each module has 500 nodes, and the 

average degree of inter-module is the same with inside module 〈𝑘〉 = 4. At each 

simulation, each node has random number initially. Simulation is terminated when the 

standard deviation of values among nodes become less than 10−4. 
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7.5 The effect of modularization for consensus dynamics 

In previous sections, the properties of dynamical processes on optimized modular 

networks are discussed. This section studies the effect of the modularization of a 

network on consensus dynamics in greater details from eigenvalue view points. Note 

that the similar analyses on other dynamics are left for future work. However, the 

analytical approach and viewpoints will become basement for further study on modular 

networks for other dynamical processes. 

A network consists of 𝑁  nodes and 𝐿  links. There are 𝑀  modules in the 

network and each node belongs to only one module. For the simplicity all modules 

have same number of nodes 𝑁𝑚. There are two type links in the network: internal links 

𝐿𝑀 connecting nodes inside a module and external links 𝐿𝐼𝑀 connecting nodes in 

different modules. The link density in each module is 𝑝 and the link density between 

modules is 𝑞. Then, the relationships between above variables are formulated as, 

 

𝑁 = 𝑚𝑀, 

𝐿 = 𝐿𝑀 + 𝐿𝐼𝑀, 

𝐿𝑀 =𝑚 𝐶2 × 𝑝𝑀, 

𝐿𝐼𝑀 =𝑀 𝐶2 ×𝑚 𝐶1 ×𝑚 𝐶1 × 𝑞, 

𝑝 =
1

 𝑚𝐶2 ×𝑀
𝑓𝐿𝑀𝐿, 

𝑞 =
1

 𝑀𝐶2 ×𝑚 𝐶1 ×𝑚 𝐶1
𝑓𝐿𝐼𝑀𝐿, 

𝑓𝐿𝑀 + 𝑓𝐿𝐼𝑀 = 1, 

(6.20) 

where 𝑓𝐿𝑀  is the fraction of links that are deployed inside modules and 𝑓𝐿𝐼𝑀 is the 

fraction of links that are deployed between modules.  

The formation of modular network begins with the initialization process: 𝑁 

nodes are deployed on the space, and the total number of links 𝐿 and the fraction 𝑓𝐿𝑀  

is given. The 𝐿𝑀/𝑀 internal links are introduced to connect nodes randomly inside 

each module. After that, the 𝐿𝐼𝑀  external links are introduced to connect nodes 

randomly in different modules. Figure 7.18 shows examples of modular network 

created by the procedures, and it is clear that the network becomes modularized along 

with the increase of 𝑓𝐿𝑀 . If 𝑓𝐿𝑀 = 1 , the network consists of isolated modular 

networks, on the other hand if 𝑓𝐿𝑀 = 0, nodes in each modular network are only 

connected to nodes in other module. 
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Figure 7.18 The formation of modular network. The network consists of 10 modular 

networks and each node belongs to one of them. 𝑓𝐿𝑀 is the fraction of internal links 

that are deployed in the inside module. A total node is 500 and total link is 2000.  

Figure 7.19 shows the index for consensus dynamics (the eigenvalue ratio 

𝜆2(𝐋)/𝜆𝑁(𝐋) of the Laplacian matrix of the modular networks) is plotted as a function 

of 𝑓𝐿𝑀  the fraction of links that are deployed in the inside modules with changing the 

number of modules under fixed total number of nodes and links, which are 500 nodes 

and 2000 links. It is shown that there are four points, which are relationships between 

the index and the number of modules from the figure.  

First one is that the modular networks with certain number of modules and 

intermediate 𝑓𝐿𝑀  have larger size of index than single random network 

(non-modularized network). It is very interesting because the modularization of a 

network adds new constraint on the communication between agents. However, this 

result implies the modularity of a network can work to enhance consensus dynamics. 

Second one is that the network with large number of modules (ex. M = 50) has 

large size of index compared to the network with small number of modules (ex. 

M = 10) when the links are used as internal links and external links equally (𝑓𝐿𝑀 =

0.5).  

Third one is that the difference of the index becomes small along with the increase 

of 𝑓𝐿𝑀, which implies the network becomes modularized, and the difference is zero at 

certain fraction (𝑓𝐿𝑀 = 0.7).  

Finally fourth one is that the difference of the index between networks with 

different number of modules increase again when the network is modularized 

sufficiently (𝑓𝐿𝑀 ≥ 0.7). However, in that case, the network with small number of 

modules (ex. 𝑀 = 10) has large size of index compared to the network with large 

number of modules (ex. 𝑀 = 50). The influence of the number of module becomes 

very large when the network is almost isolated to each module, which is compared to 

the difference at 𝑓𝐿𝑀 = 0.5. 

The difference of the index of modular network, which depends on the fraction of 

internal link 𝑓𝐿𝑀, comes from the change of 𝜆2(𝐋) mainly (see Figure 7.20 and 
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Figure 7.21). The change of 𝜆2(𝐋) in Figure 7.20 is as same as the change of the 

index 𝜆2(𝐋)/𝜆𝑁(𝐋)  in Figure 7.19. The 𝜆𝑁(𝐋)  of modular network with large 

number of modules is usually smaller than that of the network with small number of 

modules. The difference expands with the increase with 𝑓𝐿𝑀. Therefore, it is clear that 

the variation of 𝜆2(𝐋) has dominant effect to decide the index 𝜆2(𝐋)/𝜆𝑁(𝐋).  

The modularization of network changes the value of eigenvalues drastically, 

which belongs to a part of smallest eigenvalues including second smallest eigenvalue 

𝜆2(𝐋). In Figure 7.22, the smallest 30 eigenvalues of the Laplacian matrix of the 

modular network consisting of 10 modular networks is plotted with changing the 

fraction of internal links 𝑓𝐿𝑀(= 0.3, 0.6, 0.9, 0.97). It is shown that when the network 

is not sufficiently modularized (𝑓𝐿𝑀 = 0.3), the network has only one 0 eigenvalue. 

However, when the network is sufficiently modularized (𝑓𝐿𝑀 = 0.97), the network has 

10 almost 0 eigenvalues, which is the same number of modules. On the other hand, 

other eigenvalues of the Laplacian matrix are not influenced by the modularization of 

the network (Figure 7.23). This result can be inducted mathematically by considering 

consensus dynamics as markov chain [121]. 

The modular networks have effects not only to prevent consensus dynamics, 

which can be understood intuitively, but also to enhance it. The modularization of a 

network means adding new constraint on communications among agents, but the loose 

constraint by the modularization of a network with intermediate 𝑓𝐿𝑀 can enhance 

consensus dynamics. 

 

   

Figure 7.19 The eigenvalue ratio 𝜆2(𝐋)/𝜆𝑛(𝐋)  of Laplacian matrix of modular 

network consisting of M modules is plotted as a function of 𝑓𝐿𝑀 the fraction of 

internal links that are deployed to connect nodes in the same modules. Note that for the 

comparison the eigenvalue ratio 𝜆2(𝐋)/𝜆𝑛(𝐋)  of single random network is also 

plotted at 𝑓𝐿𝑀 = 0 (M=1 (single random network)). All networks have 𝑁 = 500 

nodes and 𝐿 = 2000 links respectively.  
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Figure 7.20 The 𝜆2(𝐋) second minimum eigenvalue of Laplacian matrix of modular 

network consisting of 𝑀 modules is plotted as a function of 𝑓𝐿𝑀 the fraction of 

internal links that are deployed to connect nodes in the same modules. Note that for the 

comparison the second minimum eigenvalue 𝜆2(𝐋) of single random network is also 

plotted at 𝑓𝐿𝑀 = 0 (M=1 (single random network)). All networks have 𝑁 = 500 

nodes and 𝐿 = 2000 links respectively. 

 

 

Figure 7.21 The 𝜆𝑁(𝐋) maximum eigenvalue of Laplacian matrix of modular network 

consisting of 𝑀 modules is plotted as a function of 𝑓𝐿𝑀 the fraction of internal links 

that are deployed to connect nodes in the same modules. Note that for the comparison 

the maximum eigenvalue 𝜆𝑁(𝐋) of single random network is also plotted at 𝑓𝐿𝑀 = 0 

(M=1 (single random network)). All networks have 𝑁 = 500 nodes and 𝐿 = 2000 

links respectively. 
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Figure 7.22 The small 30 eigenvalues of the Laplacian matrix of the modular network 

consisting of 10 modular networks are plotted. A total nodes and links of the modular 

network are 𝑁 = 500 nodes and 𝐿 = 2000 links respectively. The legend in the 

figure such as 0.3, 0.6, 0.9 0.97 represents the fraction of internal links 𝑓𝐿𝑀 that are 

deployed to connect nodes in the same modules. When 𝑓𝐿𝑀 = 1, the network is 

separated completely to 10 modules. 

 

Figure 7.23 The spectrum of Laplacian matrix of the modular network consisting of 10 

modular networks is plotted. A total nodes and links of the modular network are 500 

nodes and 2000 links respectively. The legend in the figure such as 0.3, 0.6, 0.9 0.97 

represents the fraction of internal links 𝑓𝐿𝑀 that are deployed to connect nodes in the 

same modules. When 𝑓𝐿𝑀 = 1, the network is separated completely to 10 modules.  
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Chapter 8  

Conclusion and Future Work 

8.1 Conclusion 

The discovery of principles between dynamical processes and underlying network is 

the ultimate goal of the study on the topology of networks [29]. This dissertation 

elucidated optimal network topologies that make specific patterns of the interactions 

and the coordinated pathways to maximize or minimize dynamical processes on 

networks, which include diffusion dynamics, cascade dynamics, and consensus 

dynamics. They are well studied topics and have wide range of applications in 

engineering. In order to design those optimal networks efficiently under fixed network 

resources such as nodes and links, three types of network design methods are proposed. 

They are evolutionary optimization by genetic algorithm, network models by heuristic 

method, and recursive interconnection of modularized networks. Their combination 

brings new framework to create optimal networks, which has enough scalability from 

small-scale to very large-scale. The optimal networks can be explained in terms of the 

role of the cluster of nodes, homogeneity and symmetry. The details of contributions 

are summarized in following paragraphs. 

A network designing framework by evolutionary optimization: Because the 

complexity of network designing problem increases exponentially along with the 

network size, an alternative method for network design is required instead of designing 

it manually. However, the efficient and versatile method for designing optimal 

networks has not been defined yet, due to the complexity of the problem. On the other 

hand nature is a typical example of complex and unpredictable environment. Natural 

life forms have been able to survive by finding better or best solutions even if they are 

not optimal. Therefore, this dissertation also accepts the concept called “survival of the 

fittest”. It was applied to the proposed framework of the network design, and 

mathematical analysis and numerical simulations validated the effectiveness. 

Especially, the proposed evolutionary optimization method has sufficient flexibility 

toward many network designing problems by giving a proper objective function. 
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An analysis from eigenvalue view points: This dissertation used a maximum 

eigenvalue of an adjacency matrix of a network to characterize its network topology, 

which is maximized in a complete graph and minimized in a completely homogeneous 

network. Although the degree distribution, which is usually used to classify networks, 

could not catch topological properties that affect dynamical processes, the eigenvalue 

index can show the existence of hub nodes and how those hub nodes are interconnected, 

which usually have dominant effect on dynamical processes such as diffusion dynamics 

and cascade dynamics. The ratio of the average degree to maximum eigenvalue 

〈𝑘〉/𝜆𝑚𝑎𝑥(𝐀) can be used to explain the relationship between topological properties of 

a network and its influence on dynamical processes simply and directly. 

Networks minimizing or maximizing the tipping point on diffusion dynamics: By 

using the evolutionary optimization, it was shown that the cluster of hub nodes is 

essential to minimize the tipping point. In order to replicate the topology, KN network 

model is proposed as a heuristic method. The KN model can make networks with the 

same topological properties of the optimized networks, which are power-law in the 

degree distribution and Rich-club phenomena (the formation of a cluster of hub nodes). 

In addition, the CPA and CRA networks are also proposed as extreme cases of the 

cluster of hub nodes, in which there is a complete graph at the center of a network and 

the rest of nodes (peripheral nodes) are connected to the complete graph or to other 

peripheral nodes. The formed networks by the models have dense connection in the 

core and sparse connection between peripheral nodes. The networks by CPA and CRA 

model can have almost theoretical upper limit of maximum eigenvalue of the 

adjacency matrix, which minimize the tipping point for diffusion dynamics. On the 

other hand, the k-regular graph where all nodes have k neighbors is shown to be 

optimal to maximize the tipping point. 

Networks maximizing or minimizing the cascade window on cascade dynamics: 

By using the evolutionary optimization, it was shown that the combination of the 

cluster of hub nodes and the cluster of vulnerable nodes is essential to maximize the 

cascade window. The global cascades are easily driven using the cluster of vulnerable 

nodes as a foothold, which can be formed by the cluster of hub nodes. The proposed P 

model can replicate the topology, and networks by the P model have the largest cascade 

window compared to even the evolutionary optimized networks. On the other hand, the 

CPA, CRA and KN networks having only the cluster of hub nodes are optimal to 

minimize cascade window. The large cluster of hub nodes, which are very stable, 

prevents cascade dynamics from spreading to the whole network. 

Networks minimizing or maximizing the convergence time of consensus dynamics: 

By using the evolutionary optimization, it was shown that the complete homogeneity in 

terms of a node degree is not a necessary condition to design networks for fast 

consensus. Previous studies found the Ramanujan graph is optimal to minimize the 
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convergence time of consensus dynamics, which belongs to k-regular graph. However, 

our mathematical analysis of evolutionary optimized networks and numerical 

simulations results show the network with small fluctuation in degrees can also make 

fast consensus. Especially, when the network is sufficiently sparse (average degree is 

〈𝑘〉 = 2), the 50 % of the time of consensus dynamics on Ramanujan graph is reduced 

on evolutionary optimized networks. Furthermore, the Ring-Trees model can replicate 

the optimized network topology and minimize the convergence time of consensus 

dynamics compared to even the evolutionary optimized networks. On the optimal 

network the local consensus achieved between each grouped agents (nodes) by trees at 

first, and the global consensus is formed via a ring network after that. On the other 

hand, the convergence time of consensus dynamics is maximized on a core with line 

network. The agents in the dense core make fast consensus locally, and the consensus 

state is very stable because they have few paths to communicate with external agents in 

a line network. The interaction gap forms slow consensus globally. 

Modular networks: Modularity is an important concept for understanding the 

structure and the functions of complex systems. There are usually many interactions 

between nodes in the same module but little interaction between the different modules. 

In this dissertation, a modular network is used as one component of a very large-scale 

network, and the modular networks with recursive structure is proposed as a method to 

connect many modules efficiently. The topology between modules is the same with the 

topology between nodes in a modular network. 

The common property of diffusion dynamics and cascade dynamics is that the 

new state occurred at part of the nodes in a network spreads into the rest of a network. 

In addition, the local environment around the trigger nodes decides whether the new 

state will survive at a steady state or disappear. Therefore, the topology of each 

modular network is more important to decide the spreading process than the topology 

of inter-modules. As a result, modular networks with recursive topology have almost 

the same performance as modular networks connected randomly. Optimizing each 

modular network is necessary to design optimal modular networks for diffusion 

dynamics and cascade dynamics. 

In the case of consensus dynamics on modular networks, the topology of 

inter-module is very important, because there are no redundant links connecting 

different modules. The optimal network for fast consensus between nodes in the same 

modular network is also optimal for fast consensus of inter-module. Therefore, the 

recursive structure of modular networks is necessary to design optimal modular 

networks for consensus dynamics. 

Modularization of a network: Modularization of a network means a single network 

split up into several networks (modular networks), where the link density of 

inter-module is sparse. This dissertation studied what kind of influence the 

modularization of a single network has on dynamical processes.  
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In general, it is known that the modularization of a network prevents diffusion, 

cascade or fast consensus. Admittedly, simulation results confirmed that this is true in 

the case of diffusion dynamics, but this is not true in the case of cascade dynamics and 

consensus dynamics with specific conditions. For example, cascade occurs more easily 

on modular networks with CPA networks than on a single CPA network. The 

modularization of a network makes the cluster size of hub nodes smaller, which makes 

spreading of cascade more easily. In addition, the modularization of a network can 

coordinate sequence of consensus dynamics. When the average degree of a network is 

〈𝑘〉 = 2, fast consensus between agents is achieved on modularized network with 

ring-trees structure compared to the consensus on a single tree network. A local 

consensus is achieved in each modular tree-network at first. After that the global 

consensus is achieved. Also, in the case for average degree is 〈𝑘〉 > 2, it is shown that 

a random network modularized to a certain extent is more optimal for fast consensus 

than on a non-modularized random network. Modularization of a network may lead to 

a wide cascade window and a fast consensus when the interaction region of nodes is 

confined to an appropriate size by it.  

Interrelationship between optimal networks for different dynamical processes: 

Through this dissertation, optimal networks are created to maximize or to minimize 

diffusion dynamics, cascade dynamics, and consensus dynamics. Each dynamics has 

different optimal networks to maximize or minimize itself. They are CPA (CRA) 

network, regular network, P model network, Ring-Trees network and a core with line 

network. On the other hand, it is interesting that the optimal network maximizing one 

dynamics is also optimal to minimize another dynamics.  

The keywords characterizing these complex and optimal networks are cluster of 

nodes, homogeneity and symmetry. The cluster of hub nodes characterizes a CPA 

(CRA) network. It maximizes the number of contact processes among nodes under 

diffusion dynamics, and it also works like a firewall to minimize cascade dynamics. 

Homogeneity in terms of node connectivity characterizes a regular network. It 

minimizes the number of contact processes and prevents diffusion dynamics. The 

coexistence of a cluster of hub nodes and a cluster of vulnerable nodes characterizes a 

P model network. It makes a foothold for the spreading of cascade dynamics and 

maximizes it. The sufficient homogeneity and symmetry in terms of network topology 

characterize a Ring-Trees network and an evolutionary optimized network for fast 

consensus. The topological patterns with no interaction gap promote consensus 

dynamics smoothly and form fast consensus. Finally, the breaking of homogeneity and 

symmetry characterizes a core with line network. It reduces the global redundant 

pathways for consensus dynamics and forms slow consensus. 

Although the degree of each node and its fraction are conventional points of view 

in previous studies on complex network, the above-mentioned three keywords 

represent the interconnecting patterns among nodes, which is not the property of a 

single node. Especially, the three keywords consider both the degree of each node and 
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how nodes interconnect each other. This is due to the fact that an aggregation of nodes 

has utterly different effects compared to the effects of a single node. The three 

keywords should be the most important points of view to understand and to explain the 

dynamical processes on the complex networks. 

8.2 Future work 

When a network topology can be assumed to be static or unchanged during dynamical 

processes, the coordination of the interaction patterns between nodes is an effective 

way to design optimal networks for dynamical processes as shown through this 

dissertation. However, if the birth and death processes of nodes and links occur, which 

depend on the dynamical processes, how should optimal networks be designed?  

On the dynamics-driven networked system, network topology and effects by 

dynamical processes are changed simultaneously, and initial network topology is not 

enough to explain the collective behavior as a result. The response rules or mechanisms 

to environments become important for the understanding of the complex dynamical 

systems. In a biological system, which is one example of a dynamics-driven networked 

system, it is said that the evolvability of the system incurs robustness that is its ability 

to maintain specific functions after changes in topology occur due to perturbation [120]. 

There are interesting studies on dynamical optimization of networks using biologically 

inspired adaptation mechanism such as intercellular information exchange by 

multi-agents [122-124]. Studying response rules with an evolving mechanism for 

designing complex dynamical systems, which can maintain its performance as much as 

possible, is one challenge for future research to advance the study of this dissertation. 
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